Что делает проводящая ткань. Проводящая ткань

В любом живом или растительном организме ткань образуют сходные по происхождению и строению клетки. Любая ткань приспособлена для выполнения одной или сразу несколько важных для животного или растительного организма функций.

Виды тканей у высших растений

Выделяют следующие виды тканей растений:

  • образовательные (меристема);
  • покровные;
  • механические;
  • проводящие;
  • основные;
  • выделительные.

Все эти ткани имеют свои особенности строения и отличаются друг от друга выполняемыми функциями.

Рис.1 Ткани растений под микроскопом

Образовательная ткань растений

Образовательная ткань – это первичная ткань, из которой образуются все другие ткани растения. Она состоит из особых клеток, способных к многократному делению. Именно из этих клеток состоит зародыш любого растения.

Эта ткань сохраняется и у взрослого растения. Она располагается:

ТОП-4 статьи которые читают вместе с этой

  • внизу корневой системы и на верхушках стеблей (обеспечивает рост растения в высоту и развитие корневой системы) – верхушечная образовательная ткань;
  • внутри стебля (обеспечивает рост растения в ширину, его утолщение) – боковая образовательная ткань;

Покровная ткань растений

Покровная ткань относится к защитным тканям. Она необходима для того, чтобы защищать растение от резких перепадов температуры, от излишнего испарения воды, от микробов, грибов, животных и от всякого рода механических повреждений.

Покровные ткани растений образованы клетками, живыми и мертвыми, способными пропускать воздух, обеспечивая необходимый для роста растения газообмен.

Строение покровной ткани растений таково:

  • сначала расположена кожица или эпидерма, которая покрывает листья растения, стебли и наиболее уязвимые части цветка; клетки кожицы живые, эластичные, они защищают растение от излишней потери влаги;
  • далее находится пробка или перидерма, которая также располагается на стеблях и корнях растения (там, где образуется слой пробки, кожица отмирает); пробка защищает растение от неблагоприятных воздействий окружающей среды.

Также выделяют такой вид покровной ткани как корка. Эта самая прочная покровная ткань, пробка в данном случае образуется не только на поверхности, но и в глубине, причём верхние ее слои потихоньку отмирают. По сути, корка состоит из пробки и мёртвых тканей.

Рис.2 Корка – вид покровной ткани растения

Для дыхания растения в корке образуются трещинки, на дне которых располагаются специальные отростки, чечевички, через которые и происходит газообмен.

Механическая ткань растений

Механические ткани придают растению нужную ему прочность. Именно благодаря их наличию растение может выдерживать сильные порывы ветра и не ломаются под струями дождя и под тяжестью плодов.

Выделяют два основных вида механических тканей: лубяные и древесные волокна .

Проводящие ткани растений

Проводящая ткань обеспечивает транспортировку воды с растворёнными в ней минералами.

Эта ткань образует две транспортные системы:

  • восходящую (от корней к листьям);
  • нисходящую (от листьев ко всем остальным частям растений).

Восходящая транспортная система состоит из трахеид и сосудов (ксилема или древесина), причём сосуды более совершенные проводящие средства, чем трахеиды.

В нисходящих системах ток воды с продуктами фотосинтеза проходит по ситовидным трубкам (флоэма или луб).

Ксилема и флоэма образуют сосудисто-волокнистые пучки – «кровеносную систему» растения, которая пронизывает его полностью, соединяя в одно целое.

Основная ткань

Основная ткань или паренхима – является основой всего растения. В неё погружены все остальные виды тканей. Это живая ткань и выполняет она разные функции. Именно из-за этого выделяются разные её виды (информация о строении и функциях разных видов основной ткани представлена в таблице ниже).

Виды основной ткани Где располагается в растении Функции Строение
Ассимиляционная листья и другие зелёные части растения способствует синтезу органических веществ состоит из фотосинтезирующих клеток
Запасающая клубни, плоды, почки, семена, луковицы, корнеплоды способствует накапливанию необходимых для развития растения органических веществ тонкостенные клетки
Водоносная стебель, листья способствует накапливанию воды рыхлая ткань, состоящая из тонкостенных клеток
Воздухоносная стебель, листья, корни способствует проведению воздуха по растению тонкостенные клетки

Рис. 3 Основная ткань или паренхима растения

Выделительные ткани

Название данной ткани говорит о том, какую именно функцию она играет. Эти ткани способствуют насыщению плодов растений маслами и соками, а также способствуют выделению листьям, цветками и плодами особого аромата. Таким образом, выделяют два вида это ткани:

  • ткани внутренней секреции;
  • ткани наружной секреции.

Что мы узнали?

Учащимся 6 класса к уроку биологии нужно запомнить, что животные и растения состоят из множества клеток, которые, в свою очередь, упорядоченно выстраиваясь, образуют ту или иную ткань. Мы выяснили какие виды тканей существуют у растений – образовательная, покровная, механическая, проводящая, основная и выделительная. Каждая ткань выполняет свою, строго определённую функцию, защищая растение или обеспечивая доступ всех его частей к воде или воздуху.

Тест по теме

Оценка доклада

Средняя оценка: 3.9 . Всего получено оценок: 1552.

25 ..

ПРОВОДЯЩИЕ ТКАНИ.

Проводящие ткани служат для передвижения по растению растворенных в воде питательных веществ.

Рис. 43 Древесинные волокна листа герани луговой (поперечный - А, Б и продольный - В разрез группы волокон):
1 - стенка клетки, 2 - простые поры, 3 - полость клетки

Подобно покровным тканям, они возникли как следствие приспособления растения к жизни в двух средах: почвенной и воздушной. В связи с этим появилась необходимость транспортировки питательных веществ в двух направлениях.

От корня к листьям движется восходящий, или транспирационный, ток водных растворов солей. Ассимиляционный, нисходящий, ток органических веществ направляется от листьев к корням. Восходящий ток осуществляется почти исключительно по трахеальным

Рис. 44 Склереиды косточки созревающих плодов алычи с живым содержимым: 1 - цитоплазма, 2- утолщенная клеточная оболочка, 3-поровые канальцы
элементам ксилемы, а. нисходящий - по ситовидным элементам флоэмы.

Сильно разветвленная сеть проводящих тканей несет водорастворимые вещества и продукты фотосинтеза ко всем органам растения, начиная от тончайших корневых окончаний до самых молодых побегов. Проводящие ткани объединяют все органы растения. Помимо дальнего, т. е. осевого, транспорта питательных веществ, по проводящим тканям осуществляется- и ближний - радиальный транспорт.

Все проводящие ткани являются сложными, или комплексными, т. е. состоят из морфологически и функционально разнородных элементов. Формируясь из одной и той же меристемы, два типа проводящих тканей - ксилема и флоэма - располагаются рядом. Во многих органах растений ксилема объединена с "флоэмой в виде тяжей, называемых проводящими пучками.

Существуют первичные и вторичные проводящие ткани. Первичные ткани закладываются в листьях, молодых побегах и корнях. Они дифференцируются из клеток прокамбия. Вторичные проводящие ткани, обычно более мощные, возникают из камбия.

Ксилема (древесина). По ксилеме от корня к листьям передвигаются вода и растворенные в ней минеральные вещества. Первичная и вторичная ксилемы содержат клетки одних и тех же типов. Однако первичная ксилема не имеет сердцевинных лучей, Отличаясь этим от вторичной.

В состав ксилемы входят морфологически различные элементы, осуществляющие функции как проведения, так и хранения запасных веществ, а также чисто опорные функции. Дальний транспорт осуществляется по трахеальным элементам ксилемы: трахеидам и сосудам, ближний - по паренхимным элементам. Опорные, а иногда и запасающие функции выполняют часть трахеид и волокна механической ткани либриформа, также входящие в состав ксилемы.

Трахеиды в зрелом состоянии - это мертвые прозенхимные клетки, суженные на концах и лишенные протопласта. Длина трахеид в среднем составляет 1-4 мм, поперечник же не превышает десятых и даже сотых долей миллиметра. Стенки трахеид одревесневают, утолщаются и несут простые или окаймленные поры, через которые происходит фильтрация растворов. Большая часть окаймленных пор находится около окончаний клеток, т. е. там, где растворы просачиваются из одной трахеиды в другую. Трахеиды есть у спорофитов всех высших растений, а у большинства хвощевидных, плауновидных, папоротниковидных и голосеменных они являются единственными проводящими элементами ксилемы.

Сосуды - это полые трубки, состоящие из отдельных члеников, располагающихся друг над другом.

Между расположенными один над другим члениками одного и того же сосуда имеются разного типа сквозные отверстия - перфорации. Благодаря перфорациям вдоль всего сосуда свободно осуществляется ток жидкости. Эволюционно сосуды, по-видимому, произошли из трахеид путем разрушения замыкающих пленок пор и последующего их слияния в одну или несколько перфораций. Концы трахеид, первоначально сильно скошенные, заняли горизонтальное положение, а сами трахеиды стали короче’и превратились в членики сосудов (рис. 45).

Сосуды появились независимо в разных линиях эволюции наземных растений. Однако наибольшего развития они достигают у покрытосеменных, где являются главнейшими водопроводящими элементами ксилемы. Возникновение сосудов - важное свидетельство эволюционного прогресса этого таксона, поскольку они существенно облегчают транспирационный ток вдоль тела растения.

Помимо первичной оболочки, сосуды и трахеиды в большинстве случаев имеют вторичные утолщения. В самых молодых трахеальных элементах вторичная оболочка может иметь форму колец, не связанных друг с другом (кольчатые трахеиды и сосуды). Позднее появляются трахеальные элементы со спиральными утолщениями. 3$тем следуют сосуды и трахеиды с утолщениями, которые могут быть охарактеризованы как спирали, витки которых связаны между собой (лестничные утолщения). В конечном итоге вторичная оболочка сливается в более или менее сплошной цилиндр, формирующийся внутрь от первичной оболочки. Этот цилиндр прерывается в отдельных участках порами. Сосуды и трахеиды с относительно небольшими округлыми участками первичной клеточной оболочки, не прикрытыми изнутри вторичной оболочкой, нередко "называют пористыми. В тех случаях, когда поры во вторичной оболочке образуют подобие сетки или лестницы, говорят о сетчатых или лестничных трахеальных элементах (лестничные сосуды и трахеиды).

Рис. 45 Изменение структуры трахеальных элементов ксилемы в ходе их эволюции (направление обозначено стрелкой):
1,2 - трахеиды с округлыми окаймленными порами, 3 - трахеиды с вытянутыми окаймленными порами, 4 - членик сосуда примитивного типа и его перфорация, образованная сближенными порами, 5 - 7 - последовательные стадии специализации члеников сосудов и образование простой перфорации

Вторичная, а иногда и первичная оболочка, как правило, лигнифицируются, т. е. пропитываются лигнином, это придает дополнительную прочность, но ограничивает возможности дальнейшего их роста в длину.

Трахеальные элементы, т. е. трахеиды и сосуды, распределяются в ксилеме различным образом. Иногда на поперечном срезе они образуют хорошо выраженные кольца (кольцесосудистая древесина) . В других случаях сосуды рассеяны более или менее равномерно по всей массе ксилемы (рассеяннососудистая древесина). Особенности распределения трахеальных элементов в ксилеме используют при определении древесин различных пород деревьев.

Помимо трахеальных элементов, ксилема включает лучевые элементы, т. е. клетки, образующие сердцевинные лучи (рис. 46), сформированные чаще всего тонкостенными паренхимными клетками (лучевая паренхима). Реже в лучах хвойных встречаются лучевые трахеиды. По сердцевинным лучам осуществляется ближний транспорт веществ в горизонтальном направлении. В ксилеме покрытосеменных помимо проводящих элементов содержатся также тонкостенные неодревесневшие живые паренхимные клетки, называемые древесинной паренхимой. По ним наряду с сердцевинными лучами отчасти осуществляется ближний транспорт. Кроме того, древесинная паренхима служит местом хранения запасных веществ. Элементы
сердцевинных лучей и древесинной паренхимы, подобно трахеальным элементам, возникают из камбия.

В биологии тканью называют группу клеток, имеющих сходное строение и происхождение, а также выполняющих одинаковые функции . У растений наиболее разнообразные и сложно устроенные ткани развились в процессе эволюции у покрытосеменных (цветковых). Органы растений обычно образованы несколькими тканями. Можно выделить шесть типов тканей растений: образовательную, основную, проводящую, механическую, покровную, секреторную. Каждая ткань включает подтипы. Между тканями, а также внутри них бывают межклетники - промежутки между клетками.

Образовательная ткань

Благодаря делению клеток образовательной ткани растение увеличивается в длину и толщину. При этом часть клеток образовательной ткани дифференцируется в клетки других тканей.

Клетки образовательной ткани достаточно мелкие, плотно прилегают друг к другу, имеют крупное ядро и тонкую оболочку.

Образовательная ткань в растениях находится в конусах нарастания корня (кончик корня) и стебля (верхушка стебля), бывает в основаниях междоузлий, также образовательная ткань составляет камбий (который обеспечивает рост стебля в толщину).

Клетки конуса нарастания корня. На фото виден процесс деления клеток (расхождение хромосом, растворение ядра).

Паренхима, или основная ткань

К паренхиме относят несколько разновидностей тканей. Различают ассимиляционную (фотосинтезирующую), запасающую, водоносную и воздухоносную основную ткань.

Фотосинтезирующая ткань состоит из клеток, содержащих хлорофилл, т. е. зеленых клеток. Эти клетки имеют тонкие стенки, содержат большое количество хлоропластов. Основная их функция - фотосинтез. Ассимиляционная ткань составляет мякоть листьев, входит в состав коры молодых стеблей деревьев и стебли трав.

В клетках запасающей ткани накапливаются запасы питательных веществ. Эта ткань составляет эндосперм семян, входит в состав клубней, луковиц и др. Сердцевина стебля, внутренние клетки коры стебля и корня, сочный околоплодник также обычно состоят из запасающей паренхимы.

Водоносная паренхима свойственна лишь ряду растений, обычно засушливых мест обитания. В клетках этой ткани накапливается вода. Водоносная ткань может быть как в листьях (алоэ), так и в стебле (кактусы).

Воздухоносная ткань свойственна водным и болотным растениям. Ее особенностью является наличие большого количества межклетников, содержащих воздух. Это облегчает газообмен растению, когда он затруднен.

Проводящая ткань

Общей функцией различных проводящих тканей является проведение веществ от одних органов растения к другим. В стволах древесных растений клетки проводящей ткани расположены в древесине и лубе. Причем в древесине расположены сосуды (трахеи) и трахеиды , по которым перемещается водный раствор от корней, а в лубе - ситовидные трубки , по которым перемещаются органические вещества от фотосинтезирующих листьев.

Сосуды и трахеиды - это мертвые клетки. По сосудам водный раствор поднимается быстрее, чем по трахеидам.

Ситовидные трубки являются живыми, но безъядерными клетками.

Покровная ткань

К покровной ткани относится кожица (эпидермис), пробка, корка. Кожица покрывает листья и зеленые стебли, это живые клетки. Пробка состоит из мертвых клеток, пропитанных жироподобным веществом, не пропускающим воду и воздух.

Главные функции любой покровной ткани - это защита внутренних клеток растения от механического повреждения, высыхания, проникновения микроорганизмов, перепадов температуры.

Пробка является вторичной покровной тканью, так как возникает на месте кожицы у стеблей и корней многолетних растений.

Корка состоит из пробки и отмерших слоев основной ткани.

Механическая ткань

Для клеток механической ткани характерны сильно утолщенные одревесневшие оболочки. Функции механической ткани - это придание телу и органам растений прочности и упругости.

В стеблях покрытосеменных растений механическая ткань может располагаться одним целостным слоем или же отдельными тяжами, отстоящими друг от друга.

В листьях волокна механической ткани обычно располагаются рядом с волокнами проводящей ткани. Вместе они образуют жилки листа.

Секреторная, или выделительная ткань растений

Клетки секреторной ткани выделяют различные вещества, и поэтому функции у этой ткани разные. Выделительные клетки у растений выстилают смоляные и эфиромасличные ходы, образуют своеобразные железы и железистые волоски. К секреторной ткани принадлежат нектарники цветков.

Смолы выполняют защитную функцию при повреждении стебля растения.

Нектар привлекает насекомых-опылителей.

Бывают секреторные клетки, выводящие продукты обмена, например, соли щавелевой кислоты.

Ткани растений: проводящие, механические и выделительные

Проводящие ткани расположены внутри побегов и корней. Содержат ксилему и флоэму. Они обеспечивают растению два тока веществ: восходящий и нисходящий. Восходящий ток обеспечивает ксилема – к надземным частям движутся растворенные в воде минеральные соли. Нисходящий ток обеспечивает флоэма – органические вещества, синтезированные в листьях и зеленых стеблях, движутся к другим органам (к корням).

Ксилема и флоэма – это сложные ткани, которые состоят из трех основных элементов:

Проводящую функцию выполняют также клетки паренхимы, служащие для транспорта веществ между тканями растения (например, сердцевинные лучи древесных стеблей обеспечивают перемещение веществ в горизонтальном направлении от первичной коры к сердцевине).

Ксилема

Ксилема (от греч. ксилон – срубленное дерево). Состоит из собственно проводящих элементов и сопровождающих клеток основной и механической тканей. Созревшие сосуды и трахеиды – это мертвые клетки, которые обеспечивают восходящий ток (движение воды и минеральных веществ). Элементы ксилемы могут выполнять еще и опорную функцию. По ксилеме весной к побегам поступают растворы не только минеральных солей, но и растворенные сахара, которые образуются вследствие гидролиза крахмала в запасающих тканях корней и стеблей (например, березовый сок).

Трахеиды – это древнейшие проводящие элементы ксилемы. Трахеиды представлены вытянутыми веретенообразными клетками с заостренными концами, расположенными одна над другой. Они имеют одревесневшие клеточные стенки с разной степенью утолщения (кольчатым, спиральным, пористым и т. п.), которые не дают им распадаться, растягиваться. В клеточных стенках есть сложные поры, затянутые поровой мембраной, через которую проходит вода. Через поровую мембрану происходит фильтрация растворов. Движение жидкости по трахеидам медленное, так как поровая мембрана препятствует движению воды. У высших споровых и голосеменных растений на трахеиды приходится около 95 % объема древесины.

Сосуды или трахеи , состоят из удлиненных клеток, расположенных одна над другой. Они образуют трубки при слиянии и отмирании отдельных клеток – члеников сосудов. Цитоплазма отмирает. Между клетками сосудов есть поперечные стенки, которые имеют большие отверстия. В стенках сосудов есть утолщения разнообразной формы (кольчатые, спиральные и т. п.). Восходящий ток происходит по относительно молодым сосудам, которые с течением времени заполняются воздухом, закупориваются выростами соседних живых клеток (паренхимы) и выполняют далее опорную функцию. По сосудам жидкость движется быстрее, чем по трахеидам.

Флоэма

Флоэма (от греч. флойос – кора) состоит из проводящих элементов и сопровождающих клеток.

Ситовидные трубки – это живые клетки, которые последовательно соединяются своими концами, не имеют органелл, ядра. Обеспечивают движение от листьев по стеблю к корню (проводят органические вещества, продукты фотосинтеза). В них есть разветвленная сеть фибрилл, внутреннее содержимое сильно обводнено. Между собою разделены пленочными перегородками с большим количеством мелких отверстий (перфораций) – ситовидными (перфорационными) пластинками (напоминают сито). Продольные оболочки этих клеток утолщенные, но не древеснеют. В цитоплазме ситовидных трубок разрушается тонопласт (оболочка вакуолей), и вакуолярный сок с растворенными сахарами смешивается с цитоплазмой. С помощью тяжей цитоплазмы соседние ситовидные трубки объединены в единое целое. Скорость движения по ситовидным трубкам меньше, чем по сосудам. Функционируют ситовидные трубки 3-4 года.

Каждый членик ситовидной трубки сопровождают клетки паренхимы – клетки-спутники , которые секретируют вещества (ферменты, АТФ и т. п.), необходимые для их функционирования. Клетки-спутники имеют большие ядра, заполнены цитоплазмой с органеллами. Они присущи не всем растениям. Их нет во флоэме высших споровых и голосеменных растений. Клетки-спутники помогают осуществить процесс активного транспорта по ситовидным трубкам.

Флоэма и ксилема образуют сосудисто-волокнистые (проводящие) пучки . Их можно увидеть в листьях, стеблях травянистых растений. В стволах деревьев проводящие пучки сливаются между собой и образуют кольца. Флоэма входит в состав луба и расположена ближе к поверхности. Ксилема входит в состав древесины и содержится ближе к сердцевине.

Сосудисто-волокнистые пучки бывают закрытые и открытые – это таксономический признак. Закрытые пучки не имеют между слоями ксилемы и флоэмы слоя камбия, поэтому образование новых элементов в них не происходит. Закрытые пучки встречаются преимущественно у однодольных растений. Открытые сосудисто-волокнистые пучки между флоэмой и ксилемой имеют слой камбия. Вследствие деятельности камбия пучок разрастается и происходит утолщение органа. Открытые пучки встречаются преимущественно у двухдольных и голосеменных растений.

Выполняют опорные функции. Образуют скелет растения, обеспечивают его прочность, придают упругость, поддерживают органы в определенном положении. Не имеют механических тканей молодые участки растущих органов. Наиболее развиты механические ткани в стебле. В корне механическая ткань сосредоточена в центре органа. Различают коленхиму и склеренхиму.

Коленхима

Коленхима (от греч. кола – клей и энхима – налитое) – состоит из живых хлорофиллоносных клеток с неравномерно утолщенными стенками. Различают угловую и пластинчатую коленхимы. Угловая коленхима состоит из клеток, которые имеют шестиугольную форму. Утолщение происходит вдоль ребер (по углам). Встречается в стеблях двудольных растений (преимущественно травянистых) и черенках листьев. Не мешает росту органов в длину. Пластинчатая коленхима имеет клетки с формой параллелепипеда, в котором утолщена лишь пара стенок, параллельных поверхности стебля. Встречается в стеблях древесных растений.

Склеренхима

Склеренхима (от греч. склерос – твердый) – это механическая ткань, которая состоит из одревесневших (пропитанных лигнином) преимущественно мертвых клеток, которые имеют равномерно утолщенные клеточные стенки. Ядро и цитоплазма разрушаются. Различают две разновидности: склеренхимные волокна и склереиды.

Склеренхимные волокна

Клетки имеют удлиненную форму с заостренными концами и поровыми каналами в клеточных стенках. Стенки клеток утолщенные и очень крепкие. Клетки плотно прилегают одна к другой. На поперечном срезе – многогранные.

В древесине склеренхимные волокна называются древесными . Они являются механической частью ксилемы, защищают сосуды от давления других тканей, ломкости.

Склеренхимные волокна луба называются лубяными. Обычно они неодревесневшие, крепкие и эластичные (используются в текстильной промышленности – волокна льна и т. п.).

Склереиды

Образуются из клеток основной ткани вследствие утолщения клеточных стенок, пропитки их лигнином. Имеют разную форму и встречаются в разных органах растений. Склереиды с одинаковым диаметром клеток называются каменистыми клетками . Они наиболее прочные. Встречаются в косточках абрикосов, вишен, скорлупе грецких орехов и т. п.

Склереиды также могут иметь звездчатую форму, расширения на обоих концах клетки, палочковидную форму.

Выделительные ткани растений

В результате процесса метаболизма в растениях образуются вещества, которые по разным причинам почти не используются (за исключением млечного сока). Обычно эти продукты накапливаются в определенных клетках. Представлены выделительные ткани группами клеток или одиночными. Делятся на внешние и внутренние.

Внешние выделительные ткани

Внешние выделительные ткани представлены видоизменениями эпидермы и особыми железистыми клетками в основной ткани внутри растений с межклеточными полостями и системой выделительных ходов, которыми секреты выводятся наружу. Выделительные ходы в разных направлениях пронизывают стебли и частично листья и имеют оболочку из нескольких слоев отмерших и живых клеток. Видоизменения эпидермы представлены многоклеточными (реже одноклеточными) железистыми волосками или пластинками разнообразного строения. Внешние выделительные ткани производят эфирные масла, бальзамы, смолы и т. п.

Известно около 3 тыс. видов голосеменных и покрытосеменных растений, которые производят эфирные масла. Около 200 видов (лавандовое, розовое масла и др.) из них используют как лечебные средства, в парфюмерии, кулинарии, изготовлении лаков и т. п. Эфирные масла – это легкие органические вещества разного химического состава. Их значение в жизни растений: запахом привлекают опылителей, отпугивают врагов, некоторые (фитонциды) – убивают или подавляют рост и размножение микроорганизмов.

Смолы образуются в клетках, которые окружают смоляные ходы, как продукты жизнедеятельности голосеменных (сосна, кипарис и т. п.) и покрытосеменных (некоторые бобовые, зонтичные и т. п.) растений. Это – разные органические вещества (смоляные кислоты, спирты и т. п.). Наружу выделяются с эфирными маслами в виде густых жидкостей, которые называются бальзамами . Они имеют антибактериальные свойства. Используются растением в природе и человеком в медицине для заживления ран. Канадский бальзам, который получают из пихты бальзамической, применяют в микроскопической технике для изготовления микропрепаратов. Основу бальзамов хвойных составляет скипидар (используют как растворитель красок, лаков и т. п.) и твердая смола – канифоль (используют при паянии, изготовлении лаков, сургуча, натирании струн смычковых музыкальных инструментов). Окаменелая смола хвойных деревьев второй половины мелово-палеогенового периода называется янтарь (используется как сырье для ювелирных изделий).

Железы, расположенные в цветке или на разных частях побегов, клетки которых выделяют нектар, называются нектарниками . Они образованы основной тканью, имеют протоки, которые открываются наружу. Выросты эпидермы, которые окружают проток, придают нектарнику разную форму (горбовидную, ямковидную, рожковидную и т. п.). Нектар – это водный раствор глюкозы и фруктозы (концентрация составляет от 3 до 72 %) с примесями ароматических веществ. Основная функция – привлечение насекомых и птиц для опыления цветков.

Благодаря гидатодам – водяным устьицам – происходит гуттация – выделение капельной воды растениями (при транспирации вода выделяется в виде пара) и солей. Гуттация – это защитный механизм, который происходит тогда, когда с удалением лишней воды не справляется транспирация. Характерна для растений, которые растут во влажном климате.

Специальные железы насекомоядных растений (известно свыше 500 видов покрытосеменных) выделяют ферменты, которые разлагают белки насекомых. Таким образом, насекомоядные растения восполняют недостаток азотистых соединений, так как их в почве не хватает. Всасываются переваренные вещества через устьица. Наиболее известны пузырчатка и росянка.

Железистые волоски накапливают и выводят наружу, например, эфирные масла (мята и т. п.), ферменты и муравьиную кислоту, которые вызывают ощущение боли и приводят к ожогам (крапива) и др.

Внутренние выделительные ткани

Внутренние выделительные ткани – это вместилища веществ или отдельные клетки, которые на протяжении жизни растения наружу не открываются. Это, например, млечники – система удлиненных клеток некоторых растений, по которым движется сок. Сок таких растений является эмульсией водного раствора сахаров, белков и минеральных веществ с каплями липидов и других гидрофобных соединений, называется латексом и имеет молочно-белый (молочай, мак и т. п.) или оранжевый (чистотел) цвета. В млечном соке некоторых растений (например, гевея бразильская) содержится значительное количество каучука .

К внутренней выделительной ткани принадлежат идиобласты – отдельные разрозненные клетки среди других тканей. В них накапливаются кристаллы щавелевокислого кальция, дубильные вещества и т. п. Клетки (идиобласты) цитрусовых (лимон, мандарин, апельсин и т. п.) накапливают эфирные масла.


Функция проводящих тканей заключается в проведении по растению воды с растворёнными в ней питательными веществами. Поэтому клетки, из которых состоят проводящие ткани, имеют вытянутую трубчатую форму, поперечные перегородки между ними или полностью разрушаются, или пронизаны многочисленными отверстиями.

Передвижение питательных веществ в растении осуществляется по двум основным направлениям. От корней к листьям поднимаются вода и минеральные вещества, которые растения получают из почвы с помощью корневой системы. От листьев к подземным органам растений передвигаются органические вещества, вырабатываемые в процессе фотосинтеза.

Классификация. Растворённые в воде минеральные и органические вещества, как правило, передвигаются по различным элементам проводящих тканей, которые в зависимости от строения и выполняемой физиологической функции подразделяются на сосуды (трахеи), трахеиды и ситовидные трубки. По сосудам и трахеидам поднимается вода с минеральными веществами, по ситовидным трубкам - различные продукты фотосинтеза. Однако органические вещества передвигаются по растению не только в нисходящем направлении. Они могут подниматься вверх по сосудам, поступая из подземных органов в надземные части растений.

Возможно передвижение органических веществ в восходящем направлении и по ситовидным трубкам - от листьев к точкам роста, цветкам и другим органам, расположенным в верхней части растения.

Сосуды и трахеиды. Сосуды состоят из вертикального ряда расположенных одна над другой клеток, между которыми разрушаются поперечные перегородки. Отдельные клетки называются члениками сосуда. Оболочка у них древеснеет и утолщается, живое содержимое в каждом членике отмирает. В зависимости от характера утолщения различают несколько типов сосудов: кольчатые, спиральные, сетчатые, лестничные и пористые (рис. 42).

Кольчатые сосуды имеют в стенках кольцеобразные древеснеющие утолщения, большая же часть стенки остаётся целлюлозной. Спиральные сосуды имеют утолщения в виде спирали. Кольчатые и спиральные сосуды характерны для молодых органов растений, так как благодаря особенностям строения не препятствуют их росту. Позднее формируются сетчатые, лестничные и пористые сосуды, с более сильным утолщением и одревеснением оболочки. Наибольшее утолщение оболочки наблюдается у пористых сосудов. Стенки всех сосудов снабжены многочисленными порами, некоторые из этих пор имеют сквозные отверстия - перфорации. При старении сосудов полость их часто закупоривается тиллами, образующимися вследствие впячивания через поры внутрь сосудов соседних паренхимных клеток и имеющими вид пузыря. Сосуды, в полости которых появляются тиллы, перестают функционировать и заменяются более молодыми. Сформировавшийся сосуд представляет собой тонкую капиллярную трубку (0,1...0,15 мм в поперечнике) и достигает иногда длины в несколько десятков метров (некоторые лианы). Чаще всего длина сосудов колеблется у разных растений в пределах 10...20 см. Сочленение между члениками сосудов может быть горизонтальное или скошенное.

Трахеиды отличаются от сосудов тем, что представляют собой отдельные замкнутые клетки с заострёнными концами. Передвижение воды и минеральных веществ осуществляется через разнообразные поры, находящиеся в оболочке трахеид, и поэтому имеет меньшую скорость по сравнению с движением веществ по сосудам. Трахеиды по строению сходны с сосудами (утолщение и одревеснение оболочки, отмирание протопласта), но являются более древним и примитивным водопроводящим элементом, чем сосуды. Длина трахеид колеблется от десятых долей миллиметра до нескольких сантиметров.

Благодаря утолщению и одревеснению стенок сосуды и трахеиды выполняют не только функцию проведения воды и минеральных веществ, но и механическую, придавая органам растений прочность. Утолщения предохраняют водопроводящие элементы от сдавливания соседними тканями.

В стенках сосудов и трахеид образуются различного вида поры - простые, окаймлённые и полуокаймлённые. Простые поры имеют в сечении чаще всего округлую форму и представляют собой каналец, проходящий через толщу вторичной оболочки и совпадающий с канальцем поры соседней клетки. Окаймлённые поры обычно наблюдаются в боковых стенках трахеид. Они имеют вид купола, возвышающегося над стенкой водопроводящей клетки с отверстием наверху. Купол образован вторичной оболочкой и своим основанием граничит с тонкой первичной оболочкой клетки.

У хвойных растений в толще первичной оболочки непосредственно под отверстием окаймлённой поры имеется утолщение - торус, который играет роль двухстороннего клапана и регулирует поступление воды в клетку. Торус обычно пронизан мельчайшими отверстиями. Окаймлённые поры соседних сосудов или трахеид, как правило, совпадают. Если сосуд или трахеида граничит с паренхимными клетками, получаются полуокаймл нные поры, так как окаймление образуется только со стороны водопроводящих клеток (см. рис. 21).

В процессе эволюции происходило постепенное усовершенствование водопроводящих элементов растений. Трахеиды как примитивный тип проводящей ткани характерны для более древних представителей растительного мира (мхов, голосеменных), хотя иногда встречаются и у высокоорганизованных растений.

Исходным типом следует считать кольчатые сосуды, от которых далее развитие пошло к наиболее совершенным сосудам - пористым. Происходило постепенное укорочение члеников сосудов при одновременном увеличении их диаметра. Поперечные перегородки между ними приобретали горизонтальное положение и пронизывались отверстиями, что обеспечивало лучшее передвижение воды. В дальнейшем произошло полное разрушение перегородок, от которых в полости сосуда иногда сохраняется небольшой валик.

Сосуды и трахеиды, кроме воды с растворёнными в ней минеральными веществами, иногда проводят и органические вещества, так называемую пасоку. Это наблюдается обычно весной, когда ферментированные органические вещества направляются из мест их отложения - корней, корневищ и других подземных частей растений - к надземным органам - стеблям и листьям.

Ситовидные трубки. По ситовидным трубкам происходит передвижение растворённых в воде органических веществ. Они состоят из вертикального ряда живых клеток и содержат хорошо выраженную цитоплазму. Ядра очень мелкие и обычно разрушаются при формировании ситовидной трубки. Имеются также лейкопласты. Поперечные перегородки между клетками ситовидных трубок снабжены многочисленными отверстиями и называются ситовидными пластинками. Через отверстия тянутся плазмодесмы. Оболочки ситовидных трубок тонкие, целлюлозные, на боковых стенках имеются простые поры. У большинства растений при развитии ситовидных трубок образуются примыкающие к ним клетки-спутницы, с которыми они связаны многочисленными плазмодесмами (рис. 43). В клетках-спутницах содержатся густая цитоплазма и хорошо выраженное ядро. Клетки-спутницы не обнаружены у хвойных растений, мхов и папоротников.

Длина ситовидных трубок значительно меньше, чем у сосудов, и колеблется от долей миллиметра до 2 мм при очень небольшом поперечнике, не превышающем сотых долей миллиметра.

Ситовидные трубки обычно функционируют один вегетационный период. Осенью поры ситовидных пластинок закупориваются, и на них образуется мозолистое тело, состоящее из особого вещества - каллезы. У некоторых растений, например у липы, мозолистые тела рассасываются, и ситовидные трубки возобновляют свою деятельность, однако в большинстве случаев они отмирают и заменяются новыми ситовидными трубками.

Живые ситовидные трубки противостоят давлению соседних тканей благодаря тургору своих клеток, а после отмирания сплющиваются, рассасываются.

Млечные сосуды (млечники). Млечники, встречающиеся у многих цветковых растений, можно отнести и к проводящим, и к выделительным тканям, так как они выполняют разнородные функции - проведение, выделение и накопление различных веществ. Млечные сосуды содержат клеточный сок особого состава, называемый млечным соком, или латексом. Они образованы одной или несколькими живыми клетками, которые имеют целлюлозную оболочку, постенный слои цитоплазмы, ядро, лейкопласты и большую центральную вакуоль с млечным соком, которая занимает почти всю полость клетки. Различают 2 типа млечников - членистые и нечленистые (рис. 44).

Членистые млечники, подобно сосудам и ситовидным трубкам, состоят из продольного ряда вытянутых клеток. Иногда поперечные перегородки между ними растворяются, и образуются сплошные тонкие трубки, от которых отходят многочисленные боковые выросты, соединяющие отдельные млечники между собой. Членистые млечники имеют растения из семейств сложноцветные (астровые), маковые, колокольчиковые и др.

Нечленистые млечники состоят из одной клетки, которая разрастается по мере роста растения. Разветвляясь, они пронизывают все тело растения, но при этом отдельные млечники никогда не соединяются. Длина их может достигать нескольких метров. Нечленистые млечники наблюдаются у растений семейств крапивные, молочайные, кутровые и др.

Млечники обычно недолговечны и, достигнув определённого возраста, отмирают и сплющиваются. При этом у каучуконосных растений латекс коагулирует, в результате чего образуется масса затвердевшего каучука.

Выделительные ткани (выделительная система)

Функции и особенности строения. Выделительные ткани служат для накопления или выделения конечных продуктов обмена веществ (катаболитов), не участвующих в дальнейшем метаболизме, а иногда и вредных для растений. Накопление их может происходить как в полости самой клетки, так и в межклетниках. Элементы выделительных тканей весьма разнообразны - специализированные клетки, каналы, желёзки, волоски и т. п. Совокупность этих элементов представляет собой выделительную систему растений.

Классификация. Различают выделительные ткани внутренней секреции и выделительные ткани наружной секреции.

Выделительные ткани внутренней секреции. К ним относятся различные вместилища выделений, в которых скапливаются такие продукты обмена веществ, как эфирные масла, смолы, дубильные вещества, каучук. Однако у некоторых растений смолы могут выделяться и наружу.

Во вместилищах выделений чаще всего накапливаются эфирные масла. Эти вместилища обычно располагаются среди клеток основной ткани недалеко от поверхности органа. По своему происхождению вместилища выделений подразделяются на схизогенные и лизигенные (рис. 45). Схизогенные вместилища возникают в результате скопления веществ в межклетнике и последующего разъединения и отмирания соседних клеток. Подобные каналообразные выделительные ходы, содержащие эфирное масло, характерны для плодов растений семейства зонтичные (сельдерейные) - укропа, кориандра, аниса и др. Примером вместилищ схизогенного происхождения могут служить и смоляные ходы в листьях и стеблях хвойных растений.

Лизигенные вместилища возникают в результате накопления продукта выделения внутри клеток, после чего происходит растворение клеточных оболочек. Широко известны лизигенные вместилища эфирных масел в плодах и листьях цитрусовых.

Выделительные ткани наружной секреции. Они менее разнообразны, чем ткани внутренней секреции.

Из них наиболее распространёны желёзистые волоски и желёзки, приспособленные к выделению эфирных масел, смолистых веществ, нектара и воды. Желёзки, выделяющие нектар, называются нектарниками. Они имеют разнообразную форму и строение и в основном находятся в цветках, но иногда образуются и на других органах растений. Желёзки, выделяющие воду, играют роль гидатод. Процесс выделения воды в капельно-жидком состоянии называется гуттацией. Гуттация происходит в условиях повышенной влажности воздуха, препятствующей транспирации.

Поделиться