Живые клетки проводящей ткани. Проводящие ткани растений


Функция проводящих тканей заключается в проведении по растению воды с растворёнными в ней питательными веществами. Поэтому клетки, из которых состоят проводящие ткани, имеют вытянутую трубчатую форму, поперечные перегородки между ними или полностью разрушаются, или пронизаны многочисленными отверстиями.

Передвижение питательных веществ в растении осуществляется по двум основным направлениям. От корней к листьям поднимаются вода и минеральные вещества, которые растения получают из почвы с помощью корневой системы. От листьев к подземным органам растений передвигаются органические вещества, вырабатываемые в процессе фотосинтеза.

Классификация. Растворённые в воде минеральные и органические вещества, как правило, передвигаются по различным элементам проводящих тканей, которые в зависимости от строения и выполняемой физиологической функции подразделяются на сосуды (трахеи), трахеиды и ситовидные трубки. По сосудам и трахеидам поднимается вода с минеральными веществами, по ситовидным трубкам - различные продукты фотосинтеза. Однако органические вещества передвигаются по растению не только в нисходящем направлении. Они могут подниматься вверх по сосудам, поступая из подземных органов в надземные части растений.

Возможно передвижение органических веществ в восходящем направлении и по ситовидным трубкам - от листьев к точкам роста, цветкам и другим органам, расположенным в верхней части растения.

Сосуды и трахеиды. Сосуды состоят из вертикального ряда расположенных одна над другой клеток, между которыми разрушаются поперечные перегородки. Отдельные клетки называются члениками сосуда. Оболочка у них древеснеет и утолщается, живое содержимое в каждом членике отмирает. В зависимости от характера утолщения различают несколько типов сосудов: кольчатые, спиральные, сетчатые, лестничные и пористые (рис. 42).

Кольчатые сосуды имеют в стенках кольцеобразные древеснеющие утолщения, большая же часть стенки остаётся целлюлозной. Спиральные сосуды имеют утолщения в виде спирали. Кольчатые и спиральные сосуды характерны для молодых органов растений, так как благодаря особенностям строения не препятствуют их росту. Позднее формируются сетчатые, лестничные и пористые сосуды, с более сильным утолщением и одревеснением оболочки. Наибольшее утолщение оболочки наблюдается у пористых сосудов. Стенки всех сосудов снабжены многочисленными порами, некоторые из этих пор имеют сквозные отверстия - перфорации. При старении сосудов полость их часто закупоривается тиллами, образующимися вследствие впячивания через поры внутрь сосудов соседних паренхимных клеток и имеющими вид пузыря. Сосуды, в полости которых появляются тиллы, перестают функционировать и заменяются более молодыми. Сформировавшийся сосуд представляет собой тонкую капиллярную трубку (0,1...0,15 мм в поперечнике) и достигает иногда длины в несколько десятков метров (некоторые лианы). Чаще всего длина сосудов колеблется у разных растений в пределах 10...20 см. Сочленение между члениками сосудов может быть горизонтальное или скошенное.

Трахеиды отличаются от сосудов тем, что представляют собой отдельные замкнутые клетки с заострёнными концами. Передвижение воды и минеральных веществ осуществляется через разнообразные поры, находящиеся в оболочке трахеид, и поэтому имеет меньшую скорость по сравнению с движением веществ по сосудам. Трахеиды по строению сходны с сосудами (утолщение и одревеснение оболочки, отмирание протопласта), но являются более древним и примитивным водопроводящим элементом, чем сосуды. Длина трахеид колеблется от десятых долей миллиметра до нескольких сантиметров.

Благодаря утолщению и одревеснению стенок сосуды и трахеиды выполняют не только функцию проведения воды и минеральных веществ, но и механическую, придавая органам растений прочность. Утолщения предохраняют водопроводящие элементы от сдавливания соседними тканями.

В стенках сосудов и трахеид образуются различного вида поры - простые, окаймлённые и полуокаймлённые. Простые поры имеют в сечении чаще всего округлую форму и представляют собой каналец, проходящий через толщу вторичной оболочки и совпадающий с канальцем поры соседней клетки. Окаймлённые поры обычно наблюдаются в боковых стенках трахеид. Они имеют вид купола, возвышающегося над стенкой водопроводящей клетки с отверстием наверху. Купол образован вторичной оболочкой и своим основанием граничит с тонкой первичной оболочкой клетки.

У хвойных растений в толще первичной оболочки непосредственно под отверстием окаймлённой поры имеется утолщение - торус, который играет роль двухстороннего клапана и регулирует поступление воды в клетку. Торус обычно пронизан мельчайшими отверстиями. Окаймлённые поры соседних сосудов или трахеид, как правило, совпадают. Если сосуд или трахеида граничит с паренхимными клетками, получаются полуокаймл нные поры, так как окаймление образуется только со стороны водопроводящих клеток (см. рис. 21).

В процессе эволюции происходило постепенное усовершенствование водопроводящих элементов растений. Трахеиды как примитивный тип проводящей ткани характерны для более древних представителей растительного мира (мхов, голосеменных), хотя иногда встречаются и у высокоорганизованных растений.

Исходным типом следует считать кольчатые сосуды, от которых далее развитие пошло к наиболее совершенным сосудам - пористым. Происходило постепенное укорочение члеников сосудов при одновременном увеличении их диаметра. Поперечные перегородки между ними приобретали горизонтальное положение и пронизывались отверстиями, что обеспечивало лучшее передвижение воды. В дальнейшем произошло полное разрушение перегородок, от которых в полости сосуда иногда сохраняется небольшой валик.

Сосуды и трахеиды, кроме воды с растворёнными в ней минеральными веществами, иногда проводят и органические вещества, так называемую пасоку. Это наблюдается обычно весной, когда ферментированные органические вещества направляются из мест их отложения - корней, корневищ и других подземных частей растений - к надземным органам - стеблям и листьям.

Ситовидные трубки. По ситовидным трубкам происходит передвижение растворённых в воде органических веществ. Они состоят из вертикального ряда живых клеток и содержат хорошо выраженную цитоплазму. Ядра очень мелкие и обычно разрушаются при формировании ситовидной трубки. Имеются также лейкопласты. Поперечные перегородки между клетками ситовидных трубок снабжены многочисленными отверстиями и называются ситовидными пластинками. Через отверстия тянутся плазмодесмы. Оболочки ситовидных трубок тонкие, целлюлозные, на боковых стенках имеются простые поры. У большинства растений при развитии ситовидных трубок образуются примыкающие к ним клетки-спутницы, с которыми они связаны многочисленными плазмодесмами (рис. 43). В клетках-спутницах содержатся густая цитоплазма и хорошо выраженное ядро. Клетки-спутницы не обнаружены у хвойных растений, мхов и папоротников.

Длина ситовидных трубок значительно меньше, чем у сосудов, и колеблется от долей миллиметра до 2 мм при очень небольшом поперечнике, не превышающем сотых долей миллиметра.

Ситовидные трубки обычно функционируют один вегетационный период. Осенью поры ситовидных пластинок закупориваются, и на них образуется мозолистое тело, состоящее из особого вещества - каллезы. У некоторых растений, например у липы, мозолистые тела рассасываются, и ситовидные трубки возобновляют свою деятельность, однако в большинстве случаев они отмирают и заменяются новыми ситовидными трубками.

Живые ситовидные трубки противостоят давлению соседних тканей благодаря тургору своих клеток, а после отмирания сплющиваются, рассасываются.

Млечные сосуды (млечники). Млечники, встречающиеся у многих цветковых растений, можно отнести и к проводящим, и к выделительным тканям, так как они выполняют разнородные функции - проведение, выделение и накопление различных веществ. Млечные сосуды содержат клеточный сок особого состава, называемый млечным соком, или латексом. Они образованы одной или несколькими живыми клетками, которые имеют целлюлозную оболочку, постенный слои цитоплазмы, ядро, лейкопласты и большую центральную вакуоль с млечным соком, которая занимает почти всю полость клетки. Различают 2 типа млечников - членистые и нечленистые (рис. 44).

Членистые млечники, подобно сосудам и ситовидным трубкам, состоят из продольного ряда вытянутых клеток. Иногда поперечные перегородки между ними растворяются, и образуются сплошные тонкие трубки, от которых отходят многочисленные боковые выросты, соединяющие отдельные млечники между собой. Членистые млечники имеют растения из семейств сложноцветные (астровые), маковые, колокольчиковые и др.

Нечленистые млечники состоят из одной клетки, которая разрастается по мере роста растения. Разветвляясь, они пронизывают все тело растения, но при этом отдельные млечники никогда не соединяются. Длина их может достигать нескольких метров. Нечленистые млечники наблюдаются у растений семейств крапивные, молочайные, кутровые и др.

Млечники обычно недолговечны и, достигнув определённого возраста, отмирают и сплющиваются. При этом у каучуконосных растений латекс коагулирует, в результате чего образуется масса затвердевшего каучука.

Выделительные ткани (выделительная система)

Функции и особенности строения. Выделительные ткани служат для накопления или выделения конечных продуктов обмена веществ (катаболитов), не участвующих в дальнейшем метаболизме, а иногда и вредных для растений. Накопление их может происходить как в полости самой клетки, так и в межклетниках. Элементы выделительных тканей весьма разнообразны - специализированные клетки, каналы, желёзки, волоски и т. п. Совокупность этих элементов представляет собой выделительную систему растений.

Классификация. Различают выделительные ткани внутренней секреции и выделительные ткани наружной секреции.

Выделительные ткани внутренней секреции. К ним относятся различные вместилища выделений, в которых скапливаются такие продукты обмена веществ, как эфирные масла, смолы, дубильные вещества, каучук. Однако у некоторых растений смолы могут выделяться и наружу.

Во вместилищах выделений чаще всего накапливаются эфирные масла. Эти вместилища обычно располагаются среди клеток основной ткани недалеко от поверхности органа. По своему происхождению вместилища выделений подразделяются на схизогенные и лизигенные (рис. 45). Схизогенные вместилища возникают в результате скопления веществ в межклетнике и последующего разъединения и отмирания соседних клеток. Подобные каналообразные выделительные ходы, содержащие эфирное масло, характерны для плодов растений семейства зонтичные (сельдерейные) - укропа, кориандра, аниса и др. Примером вместилищ схизогенного происхождения могут служить и смоляные ходы в листьях и стеблях хвойных растений.

Лизигенные вместилища возникают в результате накопления продукта выделения внутри клеток, после чего происходит растворение клеточных оболочек. Широко известны лизигенные вместилища эфирных масел в плодах и листьях цитрусовых.

Выделительные ткани наружной секреции. Они менее разнообразны, чем ткани внутренней секреции.

Из них наиболее распространёны желёзистые волоски и желёзки, приспособленные к выделению эфирных масел, смолистых веществ, нектара и воды. Желёзки, выделяющие нектар, называются нектарниками. Они имеют разнообразную форму и строение и в основном находятся в цветках, но иногда образуются и на других органах растений. Желёзки, выделяющие воду, играют роль гидатод. Процесс выделения воды в капельно-жидком состоянии называется гуттацией. Гуттация происходит в условиях повышенной влажности воздуха, препятствующей транспирации.

Проводящая ткань - одна из растительных тканей, которая необходима для перемещения питательных веществ по организму. Это важный структурный компонент генеративных и вегетативных органов размножения.

Проводящая система являет собой совокупность клеток с межклеточными порами, а также паренхиматозных и передаточных клетки, которые вместе обеспечивают внутренний транспорт жидкости.

Эволюция проводящих тканей . Биологи предполагают, что появление сосудистой системы растений обусловлено переходом из воды на сушу. При этом образовалась подземная и надземная части: стебель и листья оказались на воздухе, а корень – в почве. Так появилась проблема передачи пластических и минеральных соединений. Благодаря появлению проводящих тканей, стала возможной циркуляция жидкости, минералов, АТФ по всему организму.

Особенности строения проводящей ткани растений

Строение проводящей ткани растений достаточно сложное, так как содержат разные структурные и функциональные элементы. Она включает ксилему (древесину) и флоэму (луб), по которым осуществляется движение воды в двух направлениях.

Ксилема (древесина)

К ксилеме относят следующие ткани:

  • Собственно проводящие (трахеиды и трахеи);
  • механические (древесинные волокна);
  • паренхиматозные.

Мертвыми элементами проводящей ткани растений могут быть сосуды (трахеи) и трахеиды, так как состоят из отмерших клеток.

Трахеи - представляют собой трубки с утолщенными оболочками. Они образовались из ряда вытянутых клеток, размещенных друг над другом. Продольные оболочки клеток одревесневают и происходит неравномерное их утолщение, а поперечные стенки разрушаются, формируя сквозные проемы. Трахеи длиной, в среднем, 10см, но у некоторых растений - до 2 (дуб) или 3-5м (тропические лианы).

Трахеиды - одноклеточные элементы веретеновидной формы с заострениями на концах. Длина их - около 1мм, но может быть 4-7мм (сосна). Так же, как и трахеи, это отмершие клетки с одревесневшими и утолщенными стенками. Утолщения имеют вид колец, спиралей, сетки. Трахеиды отличаются от трахей отсутствием отверстий, поэтому движение жидкости здесь идет сквозь поры. Они высокопроницаемы для растворенных в воде минералов.


Флоэма (луб)

Флоэма также состоит из трех тканей:

  • Собственно проводящей (ситовидная система);
  • механической (лубяные волокна);
  • паренхиматозной.

Наиболее важные структурные единицы флоэмы это ситовидные трубки и клетки, которые объединены в единую систему посредством специальных полей и межклеточных контактов.

Ситовидные трубки - продолговатые, живые клетки, размеры их колеблются в пределах от 0,1 миллиметра до 2мм. Как и сосуды, они наиболее длинны у лиан. Продольные стенки их также утолщены, но остаются целлюлозными и не одревесневают. Поперечные оболочки продырявливаются, подобно ситу и называются ситовидными пластинками.

Органические продукты синтеза (энергия АТФ) перемещаются от листьев, к нижерасположенным частям, по разобщенным протопластам (смесь вакуолярного сока с цитоплазмой).

Цитоплазма клеток сохраняется, а ядро разрушается в самом начале формирования трубок. Даже при отсутствии ядра, клетки не отмирают, но их дальнейшая деятельность зависит от специфических клеток-спутниц. Они находятся рядом с ситовидными трубками. Это живые, тонкие, вытянутые по направлению ситовидной трубки клетки. Клетки спутницы являются своеобразной кладовой ферментов, которые через поры выделяются в членик ситовидной трубки и стимулируют перемещение органических веществ по ним.

Клетки-спутницы и ситовидные трубки тесно взаимосвязаны и не могут функционировать отдельно.

Ситовидные клетки не имеют специальных клеток-спутниц и не утрачивают ядра, ситовидные поля хаотично разбросаны на боковых стенках.

Проводящие ткани растений их строение и функции кратко излажены в таблице.

Структура Расположение Значение
Ксилема – проводящая ткань, состоит из полых трубок – трахеид и сосудов с уплотненной клеточной оболочкой. Древесина (ксилема), внутренняя часть дерева, которая находится ближе к осевой части, у травяных растений – больше в корневой системе, стебле. Восходящее движение воды и минеральных веществ от почвы в корни, листья, соцветия.
Флоэма имеет клетки-спутницы и ситовидные трубки, которые построены из живых клеток. Луб (флоэма) расположен под корой, формируется вследствие деления клеток камбия. Нисходящее движение органических соединений от зеленых, способных к фотосинтезу частей в стебель, корень.

Где находится проводящая ткань у растений

Если сделать поперечный срез дерева, можно увидеть несколько слоев. Вещества перемещаются по двум из них: по древесине и в лубе.

Луб (отвечает за нисходящее движение) находится под корой и при делении инициальных клеток к лубу отходят элементы оказавшиеся снаружи.

Древесина образуется из клеток камбия, что отошли к центральной части дерева и обеспечивает восходящий ток.

Роль проводящей ткани в жизни растения

  1. Перемещение растворенных в воде минеральных солей, поглощенных с почвы в стебель, листья, цветы.
  2. Транспорт энергии от фотосинтезирующих органов растения в иные участки: корневую систему, стебли, плоды.
  3. Равномерное распределение фитогормонов в организме, что способствует гармоничному росту и развитию растения.
  4. Радиальное перемещение веществ в остальные ткани, к примеру, в клетки образовательной ткани, где идет интенсивное деление. Для такого рода транспорта необходимы также передаточные клетки с множественными выступами в мембране.
  5. Проводящие ткани делают растения более гибкими и устойчивыми к внешним воздействиям.
  6. Сосудистая ткань представляет собой единую систему, которая объединяет все органы растений.

Проводящие ткани служат для передвижения по растению растворенных в воде питательных веществ. Они возникли как следствие приспособления растений к жизни на суше. В связи с жизнью в двух средах – почвенной и воздушной, возникли две проводящие ткани, по которым вещества передвигаются в двух направлениях.

По ксилеме от корней к листьям поднимаются вещества почвенного питания – вода и растворенные в ней минеральные соли (восходящий, или транспирационный ток).

По флоэме от листьев к корням передвигаются вещества, образовавшиеся в процессе фотосинтеза, главным образом сахароза (нисходящий ток). Так как эти вещества представляют собой продукты ассимиляции углекислого газа, транспорт веществ по флоэме называют током ассимилятов.

Проводящие ткани образуют в теле растения непрерывную разветвленную систему, соединяющую все органы – от тончайших корешков до самых молодых побегов. Ксилема и флоэма представляют собой сложные ткани, в их состав входят разнородные элементы – проводящие, механические, запасающие, выделительные. Самыми важными являются проводящие элементы, именно они выполняют функцию проведения веществ.

Ксилема и флоэма формируются из одной и той же меристемы и, поэтому, в растении всегда располагаются рядом.Первичные проводящие ткани образуются из первичной латеральной меристемы – прокамбия, вторичные – из вторичной латеральной меристемы – камбия. Вторичные проводящие ткани имеют более сложное строение, чем первичные.

Ксилема (древесина) состоит из проводящих элементов – трахеид и сосудов (трахей), механических элементов -древесинных волокон (волокон либриформа) и элементов основной ткани - древесинной паренхимы.

Проводящие элементы ксилемы носят название трахеальных элементов. Различают два типа трахеальных элементов –трахеиды и членики сосудов (рис. 3.26).

Трахеида представляет собой сильно вытянутую в длину клетку с ненарушенными первичными стенками. Передвижение растворов происходит путем фильтрации через окаймленные поры. Сосуд состоит из многих клеток, называемых членикамисосуда. Членики расположены друг над другом, образуя трубочку. Между соседними члениками одного и того же сосуда имеются сквозные отверстия – перфорации. По сосудам растворы передвигаются значительно легче, чем по трахеидам.

Рис. 3.26. Схема строения и сочетания трахеид (1) и члеников сосуда (2).

Трахеальные элементы в зрелом, функционирующем состоянии – мертвые клетки, не имеющие протопластов. Сохранение протопластов затрудняло бы передвижение растворов.

Сосуды и трахеиды передают растворы не только в вертикальном, но и в горизонтальном направлении в соседние трахеальные элементы и в живые клетки. Боковые стенки трахеид и сосудов сохраняются тонкими на большей или меньшей площади. В то же время они имеют вторичные утолщения, придающие стенкам прочность. В зависимости от характера утолщений боковых стенок трахеальные элементы называются кольчатыми, спиральными, сетчатыми, лестничными иточечно-поровыми (рис. 3.27).

Рис. 3.27. Типы утолщения и поровости боковых стенок у трахеальных элементов: 1 – кольчатое, 2-4 – спиральные, 5 – сетчатое утолщения; 6 – лестничная, 7 – супротивная, 8 – очередная поровость.

Вторичные кольчатые и спиральные утолщения прикрепляются к тонкой первичной стенке посредством узкого выступа. При сближении утолщений и образовании между ними перемычек возникает сетчатое утолщение, переходящее в окаймленные поры. Эту серию (рис. 3.27) можно рассматривать как морфогенетический, эволюционный ряд.

Вторичные утолщения клеточных стенок трахеальных элементов одревесневают (пропитываются лигнином), что придает им дополнительную прочность, но ограничивает возможности роста в длину. Поэтому в онтогенезе органа сначала появляются еще способные растягиваться кольчатые и спиральные элементы, не препятствующие росту органа в длину. Когда рост органа прекращается, возникают элементы, неспособные к продольному растяжению.

В процессе эволюции первыми появились трахеиды. Они найдены у первых примитивных наземных растений. Сосуды появились значительно позже путем преобразования трахеид. Сосудами обладают почти все покрытосеменные растения. Споровые и голосеменные растения, как правило, лишены сосудов и обладают только трахеидами. Лишь в виде редкого исключения сосуды встречены у таких споровых, как селагинелла, некоторых хвощей и папоротников, а также у немногих голосеменных (гнетовые). Однако у этих растений сосуды возникли независимо от сосудов покрытосеменных. Возникновение сосудов у покрытосеменных растений означало важное эволюционное достижение, так как облегчило проведение воды; покрытосеменные растения оказались более приспособленными к жизни на суше.

Древесинная паренхима и древесинные волокна выполняют запасающие и опорные функции соответственно.

Флоэма (луб) состоит из проводящих - ситовидных - элементов, сопровождающих клеток (клеток-спутниц), механических элементов – флоэмных (лубяных) волокон и элементов основной ткани – флоэмной (лубяной) паренхимы.

В отличие от трахеальных элементов проводящие элементы флоэмы и в зрелом состоянии остаются живыми, а их клеточные стенки – первичными, неодревесневшими. На стенках ситовидных элементов имеются группы мелких сквозных отверстий –ситовидные поля, через которые сообщаются протопласты соседних клеток и происходит транспорт веществ. Различают два типа ситовидных элементов – ситовидные клетки и членики ситовидных трубок.

Ситовидные клетки являются более примитивными, они присущи споровым и голосеменным растениям. Ситовидная клетка – это одна клетка, сильно вытянутая в длину, с заостренными концами. Ее ситовидные поля рассеяны по боковым стенкам. Кроме того, ситовидные клетки имеют и другие примитивные признаки: они лишены специализированных сопровождающих клеток и в зрелом состоянии содержат ядра.

У покрытосеменных растений транспорт ассимилятов осуществляют ситовидные трубки (рис. 3.28). Они состоят из многих отдельных клеток – члеников, расположенных один над другим. Ситовидные поля двух соседних члеников образуютситовидную пластинку. Ситовидные пластинки имеют более совершенное строение, чем ситовидные поля (перфорации крупнее и их больше).

В члениках ситовидных трубок в зрелом состоянии отсутствуют ядра, однако они остаются живыми и деятельно проводят вещества. Важная роль в проведении ассимилятов по ситовидным трубкам принадлежит сопровождающим клеткам (клеткам-спутницам). Каждый членик ситовидной трубки и его сопровождающая клетка (или две-три клетки в случае дополнительного деления) возникают одновременно из одной меристематической клетки. Клетки–спутницы имеют ядра и цитоплазму с многочисленными митохондриями; в них происходит интенсивный обмен веществ. Между ситовидными трубками и прилегающими к ним сопровождающими клетками имеются многочисленные цитоплазматические связи. Считается, что клетки-спутницы вместе с члениками ситовидных трубок составляют единую физиологическую систему, осуществляющую ток ассимилятов.

Рис. 3.28. Флоэма стебля тыквы на продольном (А) и поперечном (Б) срезе: 1 – членик ситовидной трубки; 2 – ситовидная пластинка; 3 – сопровождающая клетка; 4 – лубяная (флоэмная) паренхима; 5 – закупоренная ситовидная пластинка.

Длительность функционирования ситовидных трубок невелика. У однолетников и в надземных побегах многолетних трав – не более одного вегетационного периода, у кустарников и деревьев – не более трех-четырех лет. При отмирании живого содержимого ситовидной трубки, отмирает и клетка-спутница.

Лубяная паренхима состоит из живых тонкостенных клеток. В ее клетках часто накапливаются запасные вещества, а также смолы, танниды и др. Лубяные волокна играют опорную роль. Они присутствуют не у всех растений.

В теле растения ксилема и флоэма расположены рядом, образуя или слои, или обособленные тяжи, которые называютпроводящими пучками. Различают несколько типов проводящих пучков (рис. 3.29).

Закрытые пучки состоят только из первичных проводящих тканей, они не имеют камбия и далее не утолщаются. Закрытые пучки характерны для споровых и однодольных растений. Открытые пучки имеют камбий и способны к вторичному утолщению. Они характерны для голосеменных и двудольных растений.

В зависимости от взаимного расположения флоэмы и ксилемы в пучке различают следующие типы. Наиболее обычныколлатеральные пучки, в которых флоэма лежит по одну сторону от ксилемы. Коллатеральные пучки могут быть открытыми (стебли двудольных и голосеменных растений) и закрытыми (стебли однодольных растений). Если с внутренней стороны от ксилемы располагается дополнительно тяж флоэмы, такой пучок называется биколлатеральным. Биколлатеральные пучки могут быть только открытыми, они характерны для некоторых семейств двудольных растений (тыквенные, пасленовые и др.).

Встречаются также концентрические пучки, в которых одна проводящая ткань окружает другую. Они могут быть только закрытыми. Если в центре пучка находится флоэма, а ксилема ее окружает, пучок называется центрофлоэмным, илиамфивазальным. Такие пучки часто встречаются в стеблях и корневищах однодольных растений. Если в центре пучка располагается ксилема, и ее окружает флоэма, пучок называется центроксилемным, или амфикрибральным. Центроксилемные пучки обычны у папоротников.

Рис. 3.29. Типы проводящих пучков: 1 – открытый коллатеральный; 2 – открытый биколлатеральный; 3 – закрытый коллатеральный; 4 – концентрический закрытый центрофлоэмный; 5 – концентрический закрытый центроксилемный; К – камбий; Кс – ксилема; Ф – флоэма.

5.Механи́ческая , запасающая, воздухоносная ткани. Строение, функции

Механи́ческая ткань - вид ткани в растительном организме, волокна из живых и мёртвых клеток с сильно утолщённой клеточной стенкой, придающие механическую прочность организму. Возникает из верхушечной меристемы, а также в результате деятельности прокамбия и камбия.

Степень развития механических тканей во многом зависит от условий, они почти отсутствуют у растений влажных лесов, у многих прибрежных растений, но зато хорошо развиты у большинства растений засушливых местообитаний.

Механические ткани присутствуют во всех органах растения, но наиболее они развиты по перифериистебля и в центральной части корня.

Выделяют следующие типы механических тканей:

колленхима - эластичная опорная ткань первичной коры молодых стеблей двудольных растений, а также листьев. Состоит из живых клеток с неравномерно утолщёнными неодревесневшими первичными оболочками, вытянутыми вдоль оси органа. Создаёт опору растению.

склеренхима - прочная ткань из быстро отмирающих клеток с одревесневшими и равномерно утолщёнными оболочками. Обеспечивает прочность органов и всего тела растений. Различают два типа склеренхимных клеток:

волокна - длинные тонкие клетки, обычно собранные в тяжи или пучки (например, лубяные илидревесинные волокна).

склереиды - округлые мёртвые клетки с очень толстыми одревесневшими оболочками. Ими образованы семенная кожура, скорлупа орехов, косточки вишни,сливы, абрикоса; они придают мякоти груш характерный крупчатый характер. Встречаются группами в корке хвойных и некоторых лиственных пород, в твердых оболочках семян и плодов. Их клетки круглой формы с толстыми стенками и маленьким ядром.

Механические ткани обеспечивают прочность органов растений. Они составляют каркас, поддерживающий все органы растений, противодействуя их излому, сжатию, разрыву. Основными характеристиками строения механических тканей, обеспечивающими их прочность и упругость, являются мощное утолщение и одревеснение их оболочек, тесное смыкание между клетками, отсутствие перфораций в клеточных стенках.

Механические ткани наиболее развиты в стебле, где они представлены лубяными и древесинными волокнами. В корнях механическая ткань сосредоточена в центре органа.

В зависимости от формы клеток, их строения, физиологического состояния и способа утолщения клеточных оболочек различают два вида механической ткани: колленхиму и склеренхиму, (рис. 8.4).

Рис. 8.4. Механические ткани: а -уголковая колленхима; 6- склеренхима; в -- склереиды из плодов алычи: 1 -цитоплазма, 2 -утолщенная клеточная стенка, 3 - поровые канальцы.

Колленхима представлена живыми паренхимными клетками с неравномерно утолщенными оболочками, делающими их особенно хорошо приспособленными для укрепления молодых растущих органов. Будучи первичными, клетки колленхимы легко растягиваются и практически не мешают удлинению той части растения, в которой находятся. Обычно колленхима располагается отдельными тяжами или непрерывным цилиндром под эпидермой молодого стебля и черешков листьев, а также окаймляет жилки в листьях двудольных. Иногда колленхима содержит хлоропласты.

Склеренхима состоит из вытянутых клеток с равномерно утолщенными, часто одревесневшими оболочками, содержимое которых отмирает на ранних стадиях. Оболочки склеренхимных клеток обладают высокой прочностью, близкой к прочности стали. Эта ткань широко представлена в вегетативных органах наземных растений и составляет их осевую опору.

Различают два типа склеренхимных клеток: волокна и склереиды. Волокна - это длинные тонкие клетки, обычно собранные в тяжи или пучки (например, лубяные или древесинные волокна). Склереиды - это округлые мертвые клетки с очень толстыми одревесневшими оболочками. Ими образованы семенная кожура, скорлупа орехов, косточки вишни, сливы, абрикоса; они придают мякоти груш характерный крупчатый характер.

Основная ткань, или паренхима, состоит из живых, обычно тонкостенных клеток, которые составляют основу органов (откуда и название ткани). В ней размещены механические, проводящие и другие постоянные ткани. Основная ткань выполняет ряд функций, в связи с чем различают ассимиляционную (хлоренхиму), запасающую, воздухоносную (аэренхиму) и водоносную паренхиму (рис. 8.5).

Рис 8.5. Паренхимные ткани: 1-3 - хлорофиллоносная (столбчатая, губчатая и складчатая соответственно); 4-запасающая (клетки с зернами крахмала); 5 - воздухоносная, или аэренхима.

В клетках запасающей паренхимы откладываются белки, углеводы и другие вещества. Она хорошо развита в стеблях древесных растений, в корнеплодах, клубнях, луковицах, плодах и семенах. У растений пустынных местообитаний (кактусы) и солончаков в стеблях и листьях имеется водоносная паренхима, служащая для накопления воды (например, у крупных экземпляров кактусов из рода карнегия в тканях содержится до 2-3 тыс. л воды). У водных и болотных растений развивается особый тип основной ткани - воздухоносная паренхима, или аэренхима. Клетки аэренхимы образуют крупные воздухоносные межклетники, по которым воздух доставляется к тем частям растения, связь которых с атмосферой затруднена.

Аэренхима (или Эренхима) - воздухоносная ткань у растений, построенная из клеток, соединённых между собой так, что между ними остаются крупные заполненные воздухом пустоты (крупные межклетники).

В некоторых руководствах аэренхиму рассматривают как разновидность основной паренхимы.

Построена аэренхима бывает либо из обыкновенных паренхимных клеточек, либо из клеток звёздчатой формы, соединённых друг с другом своими отрогами. Характеризуется наличием межклетников.

Назначение.Встречается такая воздухоносная ткань у водных и болотных растений, и назначение её двоякое. Прежде всего - это вместилище запасов воздуха для потребностей газового обмена. У растений, целиком погружённых в воду, условия газового обмена гораздо менее удобны, чем у наземных растений. Тогда как последние окружены со всех сторон воздухом, водные растения в лучшем случае находят в окружающей среде очень небольшие его запасы; эти запасы поглощаются уже поверхностными клетками, а в глубину толстых органов уже не доходят. Обеспечить себе нормальный газовый обмен растение может при этих условиях двумя путями: либо увеличивая поверхность своих органов при соответствующем уменьшении их массивности, либо собирая внутри своих тканей запасы воздуха. Оба эти способа и наблюдаются в действительности.

Газообмен.С одной стороны, у многих растений подводные листья чрезвычайно сильно рассечены, как, например, у водяного лютика (англ.)русск. (Ranunculus aquatilis), Ouvirandrafene s tralis и проч.

С другой стороны, в случае массивности органов, они представляют собой рыхлую, наполненную воздухом губчатую массу. В течение дня, когда, благодаря процессу ассимиляции, растение выделяет кислорода во много раз больше, чем это необходимо для целей дыхания, выделенный кислород и собирается про запас в крупных межклетниках аэренхимы. В солнечную погоду значительные количества выделенного кислорода не помещаются в межклетниках и выходят наружу сквозь различные случайные отверстия в тканях. С наступлением ночи, когда процесс ассимиляции прекращается, запасённый кислород потребляется постепенно на дыхание клеток, а взамен его в воздухоносные полости аэренхимы выделяется клетками углекислота, чтобы в свою очередь днём пойти на нужды ассимиляции. Так днём и ночью продукты жизнедеятельности растения, благодаря присутствию аэренхимы, не растрачиваются понапрасну, а оставляются про запас, чтобы быть использованными в следующий период деятельности.

Что касается растений болотных, то в особо невыгодных условиях в смысле дыхания находятся у них корни. Под слоем воды, в пропитанной водою почве происходят разного рода процессы брожения и гниения; кислород в самых верхних слоях почвы уже нацело поглощён, дальше создаются уже условия анаэробной жизни, протекающей в отсутствие кислорода. Корни болотных растений не могли бы существовать при таких условиях, не будь у них в распоряжении запаса воздуха в аэренхиме.

Отличие болотных растений и не вполне погружённых водных растений от вполне погружённых состоит в том, что обновление газов внутри аэренхимы происходит не только благодаря жизнедеятельности тканей, а и при помощи диффузии (и термодиффузии); в наземных органах система межклетников открывается наружу массой мельчайших отверстий - устьиц, сквозь которые путем диффузии и уравнивается по составу воздух межклетников с окружающим воздухом. Однако при очень крупных размерах растения такой путь обновления воздуха в аэренхиме корней был бы недостаточно быстр. Соответственно этому, например, у мангровых деревьев, растущих по морским берегам с илистым дном, некоторые разветвления корней растут из ила вверх и выносят в воздух, над поверхностью воды, свои верхушки, поверхность которых пронизана многочисленными отверстиями. Такие «дыхательные корни» имеют целью более быстрое обновление воздуха в аэренхиме питающих корней, разветвленных в бескислородном иле морского дна.

Уменьшение удельного веса

Второй задачей аэренхимы является уменьшение удельного веса растения. Тело растения тяжелее воды; аэренхима играет для растения роль плавательного пузыря; благодаря её присутствию даже тонкие, бедные механическими элементами органы держатся прямо в воде, а не падают в беспорядке на дно. Поддержание органов, главным образом листьев, в положении, благоприятном для жизненных отправлений растения, достигаемое у наземных растений дорогой ценой образования массы механических элементов, достигается здесь у водяных растений просто переполнением аэренхимы воздухом.

Особенно ясно выражена эта вторая задача аэренхимы у плавающих листьев, где запросы дыхания могли бы быть удовлетворены и без помощи аэренхимы. Благодаря обилию межклетных воздухоносных ходов, лист не только плавает на поверхности воды, но и способен выдержать некоторую тяжесть. Особенно славятся этим свойством гигантские листья Victoria regia. Аэренхима, выполняющая роль плавательных пузырей, нередко и образует в самом деле на растении пузыревидные вздутия. Такие пузыри встречаются как у цветковых растений (Eichhornia crassipes, Trianea bogotensis), так и у высших водорослей: Sargassum bacciferum. Fucus vesiculosus и другие виды снабжены прекрасно развитыми плавательными пузырями.

Проводящие ткани служат для передвижения по растению растворенных в воде питательных веществ. Они возникли как следствие приспособления растений к жизни на суше. В связи с жизнью в двух средах – почвенной и воздушной, возникли две проводящие ткани, по которым вещества передвигаются в двух направлениях. По ксилеме от корней к листьям поднимаются вещества почвенного питания – вода и растворенные в ней минеральные соли (восходящий , или транспирационный ток ). По флоэме от листьев к корням передвигаются вещества, образовавшиеся в процессе фотосинтеза, главным образом сахароза (нисходящий ток ). Так как эти вещества представляют собой продукты ассимиляции углекислого газа, транспорт веще ств по флоэме называют током ассимилятов .

Проводящие ткани образуют в теле растения непрерывную разветвленную систему, соединяющую все органы – от тончайших корешков до самых молодых побегов. Ксилема и флоэма представляют собой сложные ткани, в их состав входят разнородные элементы – проводящие, механические, запасающие, выделительные. Самыми важными являются проводящие элементы, именно они выполняют функцию проведения веществ.

Ксилема и флоэма формируются из одной и той же меристемы и, поэтому, в растении всегда располагаются рядом. Первичные проводящие ткани образуются из первичной латеральной меристемы – прокамбия , вторичные – из вторичной латеральной меристемы – камбия . Вторичные проводящие ткани имеют более сложное строение, чем первичные.

Ксилема (древесина) состоит из проводящих элементов – трахеид и сосудов (трахей) , механических элементов - древесинных волокон (волокон либриформа) и элементов основной ткани - древесинной паренхимы .

Проводящие элементы ксилемы носят название трахеальных элементов. Различают два типа трахеальных элементов – трахеиды и членики сосудов (рис. 3.26 ).

Трахеида представляет собой сильно вытянутую в длину клетку с ненарушенными первичными стенками. Передвижение растворов происходит путем фильтрации через окаймленные поры. Сосуд состоит из многих клеток, называемых члениками сосуда. Членики расположены друг над другом, образуя трубочку. Между соседними члениками одного и того же сосуда имеются сквозные отверстия – перфорации . По сосудам растворы передвигаются значительно легче, чем по трахеидам.

Рис. 3.26. Схема строения и сочетания трахеид (1) и члеников сосуда (2).

Трахеальные элементы в зрелом, функционирующем состоянии – мертвые клетки, не имеющие протопластов. Сохранение протопластов затрудняло бы передвижение растворов.

Сосуды и трахеиды передают растворы не только в вертикальном, но и в горизонтальном направлении в соседние трахеальные элементы и в живые клетки. Боковые стенки трахеид и сосудов сохраняются тонкими на большей или меньшей площади. В то же время они имеют вторичные утолщения, придающие стенкам прочность. В зависимости от характера утолщений боковых стенок трахеальные элементы называются кольчатыми , спиральными , сетчатыми , лестничными и точечно-поровыми (рис. 3.27).


Рис. 3.27. Типы утолщения и поровости боковых стенок у трахеальных элементов : 1 – кольчатое, 2-4 – спиральные, 5 – сетчатое утолщения; 6 – лестничная, 7 – супротивная, 8 – очередная поровость.

Вторичные кольчатые и спиральные утолщения прикрепляются к тонкой первичной стенке посредством узкого выступа. При сближении утолщений и образовании между ними перемычек возникает сетчатое утолщение, переходящее в окаймленные поры. Эту серию (рис. 3.27 ) можно рассматривать как морфогенетический, эволюционный ряд.

Вторичные утолщения клеточных стенок трахеальных элементов одревесневают (пропитываются лигнином), что придает им дополнительную прочность, но ограничивает возможности роста в длину. Поэтому в онтогенезе органа сначала появляются еще способные растягиваться кольчатые и спиральные элементы, не препятствующие росту органа в длину. Когда рост органа прекращается, возникают элементы, неспособные к продольному растяжению.

В процессе эволюции первыми появились трахеиды. Они найдены у первых примитивных наземных растений. Сосуды появились значительно позже путем преобразования трахеид. Сосудами обладают почти все покрытосеменные растения. Споровые и голосеменные растения, как правило, лишены сосудов и обладают только трахеидами. Лишь в виде редкого исключения сосуды встречены у таких споровых, как селагинелла, некоторых хвощей и папоротников, а также у немногих голосеменных (гнетовые). Однако у этих растений сосуды возникли независимо от сосудов покрытосеменных. Возникновение сосудов у покрытосеменных растений означало важное эволюционное достижение, так как облегчило проведение воды; покрытосеменные растения оказались более приспособленными к жизни на суше.

Древесинная паренхима и древесинные волокна выполняют запасающие и опорные функции соответственно.

Флоэма (луб) состоит из проводящих - ситовидных - элементов, сопровождающих клеток (клеток-спутниц) , механических элементов – флоэмных (лубяных) волокон и элементов основной ткани – флоэмной (лубяной) паренхимы .

В отличие от трахеальных элементов проводящие элементы флоэмы и в зрелом состоянии остаются живыми, а их клеточные стенки – первичными, неодревесневшими. На стенках ситовидных элементов имеются группы мелких сквозных отверстий – ситовидные поля , через которые сообщаются протопласты соседних клеток и происходит транспорт веществ. Различают два типа ситовидных элементов – ситовидные клетки и членики ситовидных трубок .

Ситовидные клетки являются более примитивными, они присущи споровым и голосеменным растениям. Ситовидная клетка – это одна клетка, сильно вытянутая в длину, с заостренными концами. Ее ситовидные поля рассеяны по боковым стенкам. Кроме того, ситовидные клетки имеют и другие примитивные признаки: они лишены специализированных сопровождающих клеток и в зрелом состоянии содержат ядра.

У покрытосеменных растений транспорт ассимилятов осуществляют ситовидные трубки (рис. 3.28 ). Они состоят из многих отдельных клеток – члеников , расположенных один над другим. Ситовидные поля двух соседних члеников образуют ситовидную пластинку . Ситовидные пластинки имеют более совершенное строение, чем ситовидные поля (перфорации крупнее и их больше).

В члениках ситовидных трубок в зрелом состоянии отсутствуют ядра, однако они остаются живыми и деятельно проводят вещества. Важная роль в проведении ассимилятов по ситовидным трубкам принадлежит сопровождающим клеткам (клеткам-спутницам) . Каждый членик ситовидной трубки и его сопровождающая клетка (или две-три клетки в случае дополнительного деления) возникают одновременно из одной меристематической клетки. Клетки–спутницы имеют ядра и цитоплазму с многочисленными митохондриями; в них происходит интенсивный обмен веществ. Между ситовидными трубками и прилегающими к ним сопровождающими клетками имеются многочисленные цитоплазматические связи. Считается, что клетки-спутницы вместе с члениками ситовидных трубок составляют единую физиологическую систему, осуществляющую ток ассимилятов.

Рис. 3.28. Флоэма стебля тыквы на продольном (А) и поперечном (Б) срезе : 1 – членик ситовидной трубки; 2 – ситовидная пластинка; 3 – сопровождающая клетка; 4 – лубяная (флоэмная) паренхима; 5 – закупоренная ситовидная пластинка.

Длительность функционирования ситовидных трубок невелика. У однолетников и в надземных побегах многолетних трав – не более одного вегетационного периода, у кустарников и деревьев – не более трех-четырех лет. При отмирании живого содержимого ситовидной трубки, отмирает и клетка-спутница.

Лубяная паренхима состоит из живых тонкостенных клеток. В ее клетках часто накапливаются запасные вещества, а также смолы, танниды и др. Лубяные волокна играют опорную роль. Они присутствуют не у всех растений.

В теле растения ксилема и флоэма расположены рядом, образуя или слои, или обособленные тяжи, которые называют проводящимипучками . Различают несколько типов проводящих пучков (рис. 3.29 ).

Закрытые пучки состоят только из первичных проводящих тканей, они не имеют камбия и далее не утолщаются. Закрытые пучки характерны для споровых и однодольных растений. Открытые пучки имеют камбий и способны к вторичному утолщению. Они характерны для голосеменных и двудольных растений.

В зависимости от взаимного расположения флоэмы и ксилемы в пучке различают следующие типы. Наиболее обычны коллатеральные пучки, в которых флоэма лежит по одну сторону от ксилемы. Коллатеральные пучки могут быть открытыми (стебли двудольных и голосеменных растений) и закрытыми (стебли однодольных растений). Если с внутренней стороны от ксилемы располагается дополнительно тяж флоэмы, такой пучок называется биколлатеральным . Биколлатеральные пучки могут быть только открытыми, они характерны для некоторых семейств двудольных растений (тыквенные, пасленовые и др.).

Встречаются также концентрические пучки, в которых одна проводящая ткань окружает другую. Они могут быть только закрытыми. Если в центре пучка находится флоэма, а ксилема ее окружает, пучок называется центрофлоэмным , или амфивазальным . Такие пучки часто встречаются в стеблях и корневищах однодольных растений. Если в центре пучка располагается ксилема, и ее окружает флоэма, пучок называется центроксилемным , или амфикрибральным . Центроксилемные пучки обычны у папоротников.

Рис. 3.29. Типы проводящих пучков : 1 – открытый коллатеральный; 2 – открытый биколлатеральный; 3 – закрытый коллатеральный; 4 – концентрический закрытый центрофлоэмный; 5 – концентрический закрытый центроксилемный; К – камбий; Кс – ксилема; Ф – флоэма.

Многие авторы выделяют радиальные пучки. Ксилема в таком пучке располагается в виде лучей от центра по радиусам, а флоэма – между лучами ксилемы. Радиальный пучок – характерный признак корня первичного строения.

Ткани растений: проводящие, механические и выделительные

Проводящие ткани расположены внутри побегов и корней. Содержат ксилему и флоэму. Они обеспечивают растению два тока веществ: восходящий и нисходящий. Восходящий ток обеспечивает ксилема – к надземным частям движутся растворенные в воде минеральные соли. Нисходящий ток обеспечивает флоэма – органические вещества, синтезированные в листьях и зеленых стеблях, движутся к другим органам (к корням).

Ксилема и флоэма – это сложные ткани, которые состоят из трех основных элементов:

Проводящую функцию выполняют также клетки паренхимы, служащие для транспорта веществ между тканями растения (например, сердцевинные лучи древесных стеблей обеспечивают перемещение веществ в горизонтальном направлении от первичной коры к сердцевине).

Ксилема

Ксилема (от греч. ксилон – срубленное дерево). Состоит из собственно проводящих элементов и сопровождающих клеток основной и механической тканей. Созревшие сосуды и трахеиды – это мертвые клетки, которые обеспечивают восходящий ток (движение воды и минеральных веществ). Элементы ксилемы могут выполнять еще и опорную функцию. По ксилеме весной к побегам поступают растворы не только минеральных солей, но и растворенные сахара, которые образуются вследствие гидролиза крахмала в запасающих тканях корней и стеблей (например, березовый сок).

Трахеиды – это древнейшие проводящие элементы ксилемы. Трахеиды представлены вытянутыми веретенообразными клетками с заостренными концами, расположенными одна над другой. Они имеют одревесневшие клеточные стенки с разной степенью утолщения (кольчатым, спиральным, пористым и т. п.), которые не дают им распадаться, растягиваться. В клеточных стенках есть сложные поры, затянутые поровой мембраной, через которую проходит вода. Через поровую мембрану происходит фильтрация растворов. Движение жидкости по трахеидам медленное, так как поровая мембрана препятствует движению воды. У высших споровых и голосеменных растений на трахеиды приходится около 95 % объема древесины.

Сосуды или трахеи , состоят из удлиненных клеток, расположенных одна над другой. Они образуют трубки при слиянии и отмирании отдельных клеток – члеников сосудов. Цитоплазма отмирает. Между клетками сосудов есть поперечные стенки, которые имеют большие отверстия. В стенках сосудов есть утолщения разнообразной формы (кольчатые, спиральные и т. п.). Восходящий ток происходит по относительно молодым сосудам, которые с течением времени заполняются воздухом, закупориваются выростами соседних живых клеток (паренхимы) и выполняют далее опорную функцию. По сосудам жидкость движется быстрее, чем по трахеидам.

Флоэма

Флоэма (от греч. флойос – кора) состоит из проводящих элементов и сопровождающих клеток.

Ситовидные трубки – это живые клетки, которые последовательно соединяются своими концами, не имеют органелл, ядра. Обеспечивают движение от листьев по стеблю к корню (проводят органические вещества, продукты фотосинтеза). В них есть разветвленная сеть фибрилл, внутреннее содержимое сильно обводнено. Между собою разделены пленочными перегородками с большим количеством мелких отверстий (перфораций) – ситовидными (перфорационными) пластинками (напоминают сито). Продольные оболочки этих клеток утолщенные, но не древеснеют. В цитоплазме ситовидных трубок разрушается тонопласт (оболочка вакуолей), и вакуолярный сок с растворенными сахарами смешивается с цитоплазмой. С помощью тяжей цитоплазмы соседние ситовидные трубки объединены в единое целое. Скорость движения по ситовидным трубкам меньше, чем по сосудам. Функционируют ситовидные трубки 3-4 года.

Каждый членик ситовидной трубки сопровождают клетки паренхимы – клетки-спутники , которые секретируют вещества (ферменты, АТФ и т. п.), необходимые для их функционирования. Клетки-спутники имеют большие ядра, заполнены цитоплазмой с органеллами. Они присущи не всем растениям. Их нет во флоэме высших споровых и голосеменных растений. Клетки-спутники помогают осуществить процесс активного транспорта по ситовидным трубкам.

Флоэма и ксилема образуют сосудисто-волокнистые (проводящие) пучки . Их можно увидеть в листьях, стеблях травянистых растений. В стволах деревьев проводящие пучки сливаются между собой и образуют кольца. Флоэма входит в состав луба и расположена ближе к поверхности. Ксилема входит в состав древесины и содержится ближе к сердцевине.

Сосудисто-волокнистые пучки бывают закрытые и открытые – это таксономический признак. Закрытые пучки не имеют между слоями ксилемы и флоэмы слоя камбия, поэтому образование новых элементов в них не происходит. Закрытые пучки встречаются преимущественно у однодольных растений. Открытые сосудисто-волокнистые пучки между флоэмой и ксилемой имеют слой камбия. Вследствие деятельности камбия пучок разрастается и происходит утолщение органа. Открытые пучки встречаются преимущественно у двухдольных и голосеменных растений.

Выполняют опорные функции. Образуют скелет растения, обеспечивают его прочность, придают упругость, поддерживают органы в определенном положении. Не имеют механических тканей молодые участки растущих органов. Наиболее развиты механические ткани в стебле. В корне механическая ткань сосредоточена в центре органа. Различают коленхиму и склеренхиму.

Коленхима

Коленхима (от греч. кола – клей и энхима – налитое) – состоит из живых хлорофиллоносных клеток с неравномерно утолщенными стенками. Различают угловую и пластинчатую коленхимы. Угловая коленхима состоит из клеток, которые имеют шестиугольную форму. Утолщение происходит вдоль ребер (по углам). Встречается в стеблях двудольных растений (преимущественно травянистых) и черенках листьев. Не мешает росту органов в длину. Пластинчатая коленхима имеет клетки с формой параллелепипеда, в котором утолщена лишь пара стенок, параллельных поверхности стебля. Встречается в стеблях древесных растений.

Склеренхима

Склеренхима (от греч. склерос – твердый) – это механическая ткань, которая состоит из одревесневших (пропитанных лигнином) преимущественно мертвых клеток, которые имеют равномерно утолщенные клеточные стенки. Ядро и цитоплазма разрушаются. Различают две разновидности: склеренхимные волокна и склереиды.

Склеренхимные волокна

Клетки имеют удлиненную форму с заостренными концами и поровыми каналами в клеточных стенках. Стенки клеток утолщенные и очень крепкие. Клетки плотно прилегают одна к другой. На поперечном срезе – многогранные.

В древесине склеренхимные волокна называются древесными . Они являются механической частью ксилемы, защищают сосуды от давления других тканей, ломкости.

Склеренхимные волокна луба называются лубяными. Обычно они неодревесневшие, крепкие и эластичные (используются в текстильной промышленности – волокна льна и т. п.).

Склереиды

Образуются из клеток основной ткани вследствие утолщения клеточных стенок, пропитки их лигнином. Имеют разную форму и встречаются в разных органах растений. Склереиды с одинаковым диаметром клеток называются каменистыми клетками . Они наиболее прочные. Встречаются в косточках абрикосов, вишен, скорлупе грецких орехов и т. п.

Склереиды также могут иметь звездчатую форму, расширения на обоих концах клетки, палочковидную форму.

Выделительные ткани растений

В результате процесса метаболизма в растениях образуются вещества, которые по разным причинам почти не используются (за исключением млечного сока). Обычно эти продукты накапливаются в определенных клетках. Представлены выделительные ткани группами клеток или одиночными. Делятся на внешние и внутренние.

Внешние выделительные ткани

Внешние выделительные ткани представлены видоизменениями эпидермы и особыми железистыми клетками в основной ткани внутри растений с межклеточными полостями и системой выделительных ходов, которыми секреты выводятся наружу. Выделительные ходы в разных направлениях пронизывают стебли и частично листья и имеют оболочку из нескольких слоев отмерших и живых клеток. Видоизменения эпидермы представлены многоклеточными (реже одноклеточными) железистыми волосками или пластинками разнообразного строения. Внешние выделительные ткани производят эфирные масла, бальзамы, смолы и т. п.

Известно около 3 тыс. видов голосеменных и покрытосеменных растений, которые производят эфирные масла. Около 200 видов (лавандовое, розовое масла и др.) из них используют как лечебные средства, в парфюмерии, кулинарии, изготовлении лаков и т. п. Эфирные масла – это легкие органические вещества разного химического состава. Их значение в жизни растений: запахом привлекают опылителей, отпугивают врагов, некоторые (фитонциды) – убивают или подавляют рост и размножение микроорганизмов.

Смолы образуются в клетках, которые окружают смоляные ходы, как продукты жизнедеятельности голосеменных (сосна, кипарис и т. п.) и покрытосеменных (некоторые бобовые, зонтичные и т. п.) растений. Это – разные органические вещества (смоляные кислоты, спирты и т. п.). Наружу выделяются с эфирными маслами в виде густых жидкостей, которые называются бальзамами . Они имеют антибактериальные свойства. Используются растением в природе и человеком в медицине для заживления ран. Канадский бальзам, который получают из пихты бальзамической, применяют в микроскопической технике для изготовления микропрепаратов. Основу бальзамов хвойных составляет скипидар (используют как растворитель красок, лаков и т. п.) и твердая смола – канифоль (используют при паянии, изготовлении лаков, сургуча, натирании струн смычковых музыкальных инструментов). Окаменелая смола хвойных деревьев второй половины мелово-палеогенового периода называется янтарь (используется как сырье для ювелирных изделий).

Железы, расположенные в цветке или на разных частях побегов, клетки которых выделяют нектар, называются нектарниками . Они образованы основной тканью, имеют протоки, которые открываются наружу. Выросты эпидермы, которые окружают проток, придают нектарнику разную форму (горбовидную, ямковидную, рожковидную и т. п.). Нектар – это водный раствор глюкозы и фруктозы (концентрация составляет от 3 до 72 %) с примесями ароматических веществ. Основная функция – привлечение насекомых и птиц для опыления цветков.

Благодаря гидатодам – водяным устьицам – происходит гуттация – выделение капельной воды растениями (при транспирации вода выделяется в виде пара) и солей. Гуттация – это защитный механизм, который происходит тогда, когда с удалением лишней воды не справляется транспирация. Характерна для растений, которые растут во влажном климате.

Специальные железы насекомоядных растений (известно свыше 500 видов покрытосеменных) выделяют ферменты, которые разлагают белки насекомых. Таким образом, насекомоядные растения восполняют недостаток азотистых соединений, так как их в почве не хватает. Всасываются переваренные вещества через устьица. Наиболее известны пузырчатка и росянка.

Железистые волоски накапливают и выводят наружу, например, эфирные масла (мята и т. п.), ферменты и муравьиную кислоту, которые вызывают ощущение боли и приводят к ожогам (крапива) и др.

Внутренние выделительные ткани

Внутренние выделительные ткани – это вместилища веществ или отдельные клетки, которые на протяжении жизни растения наружу не открываются. Это, например, млечники – система удлиненных клеток некоторых растений, по которым движется сок. Сок таких растений является эмульсией водного раствора сахаров, белков и минеральных веществ с каплями липидов и других гидрофобных соединений, называется латексом и имеет молочно-белый (молочай, мак и т. п.) или оранжевый (чистотел) цвета. В млечном соке некоторых растений (например, гевея бразильская) содержится значительное количество каучука .

К внутренней выделительной ткани принадлежат идиобласты – отдельные разрозненные клетки среди других тканей. В них накапливаются кристаллы щавелевокислого кальция, дубильные вещества и т. п. Клетки (идиобласты) цитрусовых (лимон, мандарин, апельсин и т. п.) накапливают эфирные масла.

Поделиться