Первичные проводящие ткани. Проводящая ткань

Рис. Клеточное строение однолетнего стебля липы. Продольный и поперечный срезы: 1 - система покровных тканей (снаружи внутрь; один слой эпидермиса, пробка, первичная кора); 2-5 - луб: 2 - лубяные волокна, 3 - ситовидные трубки, 4 - клетки-спутники, 5 - клетки лубяной паренхимы; 6 - клетки камбия, в крайних слоях растянутые, дифференцирующиеся; 7-9 клеточные элементы древесины: 7 - клетки сосудов, 8 - древесные волокна, 9 - клетки древесной паренхимы (7 , 8 и 9 показаны также крупно); 10 - клетки сердцевины.

Вода и минеральные вещества, поступающие через корень, должны достигать всех частей растения, в то же время вещества, образующиеся в листьях в процессе фотосинтеза, также предназначены для всех клеток. Таким образом, в теле растения должна существовать специальная система, обеспечивающая транспорт и перераспределение всех веществ. Эту функцию у растений выполняют проводящие ткани. Существует два типа проводящих тканей: ксилема (древесина) и флоэма (луб). По ксилеме осуществляется восходящий ток: передвижение воды с минеральными солями из корня во все органы растения. По флоэме идет нисходящий ток: транспорт органических веществ, поступающих из листьев. Проводящие ткани являются сложными тканями, так как состоят из нескольких типов по-разному дифференцированных клеток.

Ксилема (древесина). Ксилема состоит из проводящих элементов: сосудов, или трахей, и трахеид, а также из клеток, выполняющих механическую и запасающую функцию.

Трахеиды. Это мертвые вытянутые клетки с косо срезанными заостренными концами (рис.12).

Их одревесневшие стенки сильно утолщены. Обычно длина трахеид составляет 1-4 мм. Располагаясь в цепочку друг за другом, трахеиды образуют водопроводящую систему у папоротникообразных и голосеменных растений. Связь между соседними трахеидами осуществляется через поры. Путем фильтрации сквозь мембрану поры осуществляется и верти­кальный, и горизонтальный транспорт воды с растворенными минеральными веществами. Движение воды по трахеидам идет с медленной скоростью.

Сосуды (трахеи). Сосуды образуют наиболее совершенную проводящую систему, характерную для покрытосеменных растений. Они представляют собой длинную полую трубку, состоящую из цепочки мертвых клеток - члеников сосуда, в поперечных стенках которых находятся крупные отверстия - перфорации. Благодаря этим отверстиям осуществляется быстрый ток воды. Сосуды редко бывают одиночными, обычно они располагаются группами. Диаметр сосуда - 0,1 - 0,2 мм. На ранней стадии развития из прокамбия ксилемы на внутренних стенках сосудов образуются целлюлозные, впоследствии одревесневающие, утолщения. Эти утолщения препятствуют сминанию сосудов под давлением соседних растущих клеток. Сначала образуются кольчатые и спиральные утолщения, которые не препятствуют дальнейшему удлинению клеток. Позже возникают более широкие сосуды с лестничными утолщениями, а затем пористые сосуды, для которых характерна наибольшая площадь утолщения (рис.13).

Через неутолщенные участки сосудов (поры) осуществляется горизонтальный транспорт воды в соседние сосуды и клетки паренхимы. Появление сосудов в процессе эволюции обеспечило покрытосеменным растениям высокую приспособленность к жизни на суше и, как результат, их господство в современном растительном покрове Земли.

Другие элементы ксилемы. В состав ксилемы кроме проводящих элементов входят также древесинная паренхима и механические элементы - древесинные волокна, или либриформ. Волокна, так же как и сосуды, возникли в процессе эволюции из трахеид. Однако в отличие от сосудов у волокон уменьшилось число пор и сформировалась еще более утолщенная вторичная оболочка.

Флоэма (луб). Флоэма осуществляет нисходящий ток органических веществ - продуктов фотосинтеза. В состав флоэмы входят ситовидные трубки, клетки-спутницы, механические (лубяные) волокна и лубяная паренхима.

Ситовидные трубки. В отличие от проводящих элементов ксилемы, ситовидные трубки представляют собой цепочку живых клеток (рис.14).

Поперечные стенки двух смежных клеток, входящих в состав ситовидной трубки, пронизаны большим числом сквозных отверстий, образующих структуру, напоминающую сито. С этим и связано название ситовидных трубок. Стенки, несущие эти отверстия, называют ситовидными пластинками. Через эти отверстия и осуществляется транспорт органических веществ из одного членика в другой.

Членики ситовидной трубки соединены своеобразными порами с клетками-спутницами (см. ниже). С паренхимными клетками трубки сообщаются через простые поры. В зрелых ситовидных клетках отсутствуют ядро, рибосомы и комплекс Гольджи, а их функциональная активность и жизнедеятельность поддерживается клетками-спутницами.

Клетки-спутницы (сопровождающие клетки). Располагаются вдоль продольных стенок членика ситовидной трубки. Клетки-спутницы и членики ситовидных трубок образуются из общих материнских клеток. Материнская клетка делится продольной перегородкой, и из двух образовавшихся клеток одна превращается в членик ситовидной трубки, а из другой развиваются одна или несколько клеток-спутниц. Клетки-спутницы имеют ядро, цитоплазму с многочисленными митохондриями, в них происходит активный обмен веществ, что связано с их функцией: обеспечивать жизнедеятельность безъядерных ситовидных клеток.

Другие элементы флоэмы. В состав флоэмы наряду с проводящими элементами входят механические лубяные (флоэмные) волокна и лубяная (флоэмная) паренхима.

Проводящие пучки. В растении проводящие ткани (ксилема и флоэма) образуют особые структуры - проводящие пучки. Если пучки частично или полностью окружены тяжами механической ткани, их называют сосудисто-волокнистыми пучками. Эти пучки пронизывают все тело растения, образуя единую проводящую систему.

Первоначально проводящие ткани образуются из клеток первичной меристемы - прокамбия. Если при образовании пучка прокамбий полностью расходуется на формирование первичных проводящих тканей, то такой пучок называют закрытым (рис.15).

Он не способен к дальнейшему (вторичному) утолщению, потому что в нем нет камбиальных клеток. Такие пучки характерны для однодольных растений.

У двудольных и голосеменных растений между первичными ксилемой и флоэмой остается часть прокамбия, которая в дальнейшем становится пучковым камбием. Его клетки способны делиться, образуя новые проводящие и механические элементы, что обеспечивает вторичное утолщение пучка и, как следствие, рост стебля в толщину. Проводящий пучок, содержащий камбий, называют открытым (см. рис.15).

В зависимости от взаимного расположения ксилемы и флоэмы различают несколько типов проводящих пучков (рис.16)

Коллатеральные пучки. Ксилема и флоэма примыкают друг к другу бок о бок. Такие пучки характерны для стеблей и листьев большинства современных семенных растений. Обыч­но в таких пучках ксилема занимает положение ближе к центру осевого органа, а флоэма обращена к периферии.

Биколлатералъные пучки. К ксилеме примыкают бок о бок два тяжа флоэмы: один - с внутренней стороны, другой - с периферии. Периферический тяж флоэмы преимущественно состоит из вторичной флоэмы, внутренний - из первичной, так как развивается из прокамбия.

Концентрические пучки. Одна проводящая ткань окружает другую проводящую ткань: ксилема - флоэму или флоэма - ксилему.

Радиальные пучки. Характерны для корней растений. Ксилема располагается по радиусам органа, между которыми находятся тяжи флоэмы.

Проводящая ткань

Проводящая ткань осуществляет передвижение растворённых питательных веществ по растению. У многих высших растений она представлена проводящими элементами (сосудами, трахеидами и ситовидными трубками). В стенках проводящих элементов есть поры и сквозные отверстия, облегчающие передвижение веществ от клетки к клетке. Проводящая ткань образует в теле растения непрерывную разветвлённую сеть, соединяющую все его органы в единую систему - от тончайших корешков до молодых побегов, почек и кончиков листа.

Происхождение

Учёные считают, что возникновение тканей связано в истории Земли с выходом растений на сушу. Когда часть растения оказалась в воздушной среде, а другая часть (корневая) - в почве, появилась необходимость доставки воды и минеральных солей от корней к листьям, а органических веществ-от листьев к корням. Так в ходе эволюции растительного мира возникло два типа проводящих тканей - древесина и луб. По древесине (по трахеидам и сосудам) вода с растворёнными минеральными веществам поднимается от корней к листьям - это водопроводящий, или восходящий, ток. По лубу (по ситовидным трубкам) образовавшиеся в зелёных листьях органические вещества поступают к корням и другим органам растения - это нисходящий ток.

Значение

Проводящие ткани растений-это ксилема (древесина) и флоэма (луб). По ксилеме (из корня в стебель) идёт восходящий ток воды с растворёнными в ней минеральными солями. По флоэме - более слабый и медленный ток воды и органических веществ.

Значение древесины

Ксилема, по которой идёт сильный и быстрый восходящий ток, образована мёртвыми, разными по величине клетками. Цитоплазмы в них нет, стенки одревеснели и снабжены многочисленными порами. Представляют собой цепочки из прилегающих друг к другу длинных мёртвых водопроводящих клеток. В местах соприкосновения у них имеются поры, по которым и передвигаются из клетки в клетку по направлению к листьям. Так устроены трахеиды. У цветковых растений появляются и более совершенные проводящие ткани-сосуды. В сосудах поперечные стенки клеток в большей или меньшей степени разрушаются, и представляют собой полые трубки. Таким образом, сосуды - это соединения многих мёртвых трубчатых клеток, называемых члениками. Располагаясь друг над другом, они образуют трубочку. По таким сосудам растворы передвигаются ещё быстрее. Помимо цветковых, другие высшие растения имеют только трахеиды.

Значение луба

В силу того, что нисходящий ток более слабый, клетки флоэмы могут оставаться живыми. Они образуют ситовидные трубки - их поперечные стенки густо пронизаны отверстиями. Ядер в таких клетках нет, но они сохраняют живую цитоплазму. Ситовидные трубки остаются живыми недолго, чаще 2-3 года, изредка - 10-15 лет. На смену им постоянно образуются новые.


Wikimedia Foundation . 2010 .

Смотреть что такое "Проводящая ткань" в других словарях:

    См. Ткани растений … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

    - (лат. textus, греч. histds), у животных система клеток, сходных по происхождению, строению и функциям в организме, а также межклеточных веществ и структур продуктов их жизнедеятельности. Выделяют 4 типа Т., соответствующие осн. соматич. функциям… … Биологический энциклопедический словарь

    У этого термина существуют и другие значения, см. Ткань (значения). Ткань система клеток и межклеточного вещества, объединенных общим происхождением, строением и выполняемыми функциями. Строение тканей живых организмов изучает наука… … Википедия

    Сердца, сложное нервно мышечное образование, обеспечивающее его ритмичную работу. Клетки проводящей системы производят и передают ритмичные импульсы возбуждения на мышцы предсердий и желудочков, вызывая их сокращение. * * * ПРОВОДЯЩАЯ СИСТЕМА… … Энциклопедический словарь

    Проводящая система сердца - Сердце как орган, работающий в системе постоянного автоматизма, включает в себя проводящую систему сердца, systema conducens cordis, координирующую, корригирующую и обеспечивающую его автоматизм с учетом сокращения мускулатуры отдельных камер.… … Атлас анатомии человека

    Ткань(и) - (в биологии) совокупность клеток (сходных по строению, происхождению, функциям) и межклеточного вещества. Ткани животных эпителиальная (покрывающая поверхность кожи, выстилающая полости организма и др.), мышечная, соединительная и нервная, ткани… … Начала современного естествознания

    Бурая жировая ткань … Википедия

    Это ткань живого организма, не отвечающая непосредственно за работу какого либо органа или системы органов, но играющая вспомогательную роль во всех органах, составляя 60 90 % от их массы. Выполняет опорную, защитную и трофическую функции.… … Википедия

    Мышечными тканями (лат. textus muscularis) называют ткани, различные по строению и происхождению, но сходные по способности к выраженным сокращениям. Состоят из вытянутых клеток, которые принимают раздражение от нервной системы и отвечают на … Википедия

    Соединительная ткань это ткань живого организма, не относящаяся к собственным функциям каких либо органов, но присутствующая на вспомогательных ролях во всех них, составляя 60 90 % их массы. Выполняет опорную, защитную и трофическую функции.… … Википедия


Проводящая ткань состоит из живых или мёртвых удлинённых клеток, которые имеют вид трубок.

В стебле и листьях растений расположены пучки проводящей ткани. В проводящей ткани выделяют сосуды и ситовидные трубки.

Сосуды - последовательно соединённые мёртвые полые клетки, поперечные перегородки между которыми исчезают. По сосудам вода и растворённые в ней минеральные вещества из корней поступают в стебель и листья.

Ситовидные трубки - удлинённые безъядерные живые клетки, последовательно соединённые между собой. По ним органические вещества из листьев (где они образовались) перемещаются к другим органам растения.

Проводящая ткань обеспечивает транспортировку воды с растворёнными в ней минералами.

Эта ткань образует две транспортные системы:

  • восходящую (от корней к листьям);
  • нисходящую (от листьев ко всем остальным частям растений).

Восходящая транспортная система состоит из трахеид и сосудов (ксилема или древесина), причём сосуды более совершенные проводящие средства, чем трахеиды.

В нисходящих системах ток воды с продуктами фотосинтеза проходит по ситовидным трубкам (флоэма или луб).

Ксилема и флоэма образуют сосудисто-волокнистые пучки – «кровеносную систему» растения, которая пронизывает его полностью, соединяя в одно целое.

Ученые считают, что возникновение тканей связано в истории Земли с выходом растений на сушу. Когда часть растения оказалась в воздушной среде, а другая часть (корневая) - в почве, появилась необходимость доставки воды и минеральных солей от корней к листьям, а органических веществ - от листьев к корням. Так в ходе эволюции растительного мира возникло два типа проводящих тканей - древесина и луб.

По древесине (по трахеидам и сосудам) вода с растворенными минеральными веществами поднимается от корней к листьям - это водопроводящий, или восходящий, ток. По лубу (по ситовидным трубкам) образовавшиеся в зеленых листьях органические вещества поступают к корням и другим органам растения - это нисходящий ток.

Образовательная ткань

Образовательная ткань находится во всех растущих частях растения. Образовательная ткань состоит из клеток, которые способны делиться в течение всей жизни растения. Клетки здесь лежат очень быстро друг к другу. Благодаря делению они образуют множество новых клеток, обеспечивая тем самым рост растения в длину и толщину. Появившиеся в ходе деления образовательных тканей клетки затем преобразуются в клетки других тканей растения.

Это первичная ткань, из которой образуются все другие ткани растения. Она состоит из особых клеток, способных к многократному делению. Именно из этих клеток состоит зародыш любого растения.

Эта ткань сохраняется и у взрослого растения. Она располагается:

  • внизу корневой системы и на верхушках стеблей (обеспечивает рост растения в высоту и развитие корневой системы) – верхушечная образовательная ткань;
  • внутри стебля (обеспечивает рост растения в ширину, его утолщение) – боковая образовательная ткань.

В отличие от других тканей, цитоплазма образовательной ткани гуще и плотнее. Клетка имеет хорошо развитые органоиды, обеспечивающие синтез белка. Ядру характерны крупные размеры. Масса ядра и цитоплазмы поддерживаются в постоянном соотношении. Увеличение ядра сигнализирует о начале процесса клеточного деления, происходящего путем митоза для вегетативных частей растений и мейоза для спорогенных меристем.

Проводящие ткани служат для передвижения по растению растворенных в воде питательных веществ. Они возникли как следствие приспособления растений к жизни на суше. В связи с жизнью в двух средах – почвенной и воздушной, возникли две проводящие ткани, по которым вещества передвигаются в двух направлениях. По ксилеме от корней к листьям поднимаются вещества почвенного питания – вода и растворенные в ней минеральные соли (восходящий , или транспирационный ток ). По флоэме от листьев к корням передвигаются вещества, образовавшиеся в процессе фотосинтеза, главным образом сахароза (нисходящий ток ). Так как эти вещества представляют собой продукты ассимиляции углекислого газа, транспорт веще ств по флоэме называют током ассимилятов .

Проводящие ткани образуют в теле растения непрерывную разветвленную систему, соединяющую все органы – от тончайших корешков до самых молодых побегов. Ксилема и флоэма представляют собой сложные ткани, в их состав входят разнородные элементы – проводящие, механические, запасающие, выделительные. Самыми важными являются проводящие элементы, именно они выполняют функцию проведения веществ.

Ксилема и флоэма формируются из одной и той же меристемы и, поэтому, в растении всегда располагаются рядом. Первичные проводящие ткани образуются из первичной латеральной меристемы – прокамбия , вторичные – из вторичной латеральной меристемы – камбия . Вторичные проводящие ткани имеют более сложное строение, чем первичные.

Ксилема (древесина) состоит из проводящих элементов – трахеид и сосудов (трахей) , механических элементов - древесинных волокон (волокон либриформа) и элементов основной ткани - древесинной паренхимы .

Проводящие элементы ксилемы носят название трахеальных элементов. Различают два типа трахеальных элементов – трахеиды и членики сосудов (рис. 3.26 ).

Трахеида представляет собой сильно вытянутую в длину клетку с ненарушенными первичными стенками. Передвижение растворов происходит путем фильтрации через окаймленные поры. Сосуд состоит из многих клеток, называемых члениками сосуда. Членики расположены друг над другом, образуя трубочку. Между соседними члениками одного и того же сосуда имеются сквозные отверстия – перфорации . По сосудам растворы передвигаются значительно легче, чем по трахеидам.

Рис. 3.26. Схема строения и сочетания трахеид (1) и члеников сосуда (2).

Трахеальные элементы в зрелом, функционирующем состоянии – мертвые клетки, не имеющие протопластов. Сохранение протопластов затрудняло бы передвижение растворов.

Сосуды и трахеиды передают растворы не только в вертикальном, но и в горизонтальном направлении в соседние трахеальные элементы и в живые клетки. Боковые стенки трахеид и сосудов сохраняются тонкими на большей или меньшей площади. В то же время они имеют вторичные утолщения, придающие стенкам прочность. В зависимости от характера утолщений боковых стенок трахеальные элементы называются кольчатыми , спиральными , сетчатыми , лестничными и точечно-поровыми (рис. 3.27).


Рис. 3.27. Типы утолщения и поровости боковых стенок у трахеальных элементов : 1 – кольчатое, 2-4 – спиральные, 5 – сетчатое утолщения; 6 – лестничная, 7 – супротивная, 8 – очередная поровость.

Вторичные кольчатые и спиральные утолщения прикрепляются к тонкой первичной стенке посредством узкого выступа. При сближении утолщений и образовании между ними перемычек возникает сетчатое утолщение, переходящее в окаймленные поры. Эту серию (рис. 3.27 ) можно рассматривать как морфогенетический, эволюционный ряд.

Вторичные утолщения клеточных стенок трахеальных элементов одревесневают (пропитываются лигнином), что придает им дополнительную прочность, но ограничивает возможности роста в длину. Поэтому в онтогенезе органа сначала появляются еще способные растягиваться кольчатые и спиральные элементы, не препятствующие росту органа в длину. Когда рост органа прекращается, возникают элементы, неспособные к продольному растяжению.

В процессе эволюции первыми появились трахеиды. Они найдены у первых примитивных наземных растений. Сосуды появились значительно позже путем преобразования трахеид. Сосудами обладают почти все покрытосеменные растения. Споровые и голосеменные растения, как правило, лишены сосудов и обладают только трахеидами. Лишь в виде редкого исключения сосуды встречены у таких споровых, как селагинелла, некоторых хвощей и папоротников, а также у немногих голосеменных (гнетовые). Однако у этих растений сосуды возникли независимо от сосудов покрытосеменных. Возникновение сосудов у покрытосеменных растений означало важное эволюционное достижение, так как облегчило проведение воды; покрытосеменные растения оказались более приспособленными к жизни на суше.

Древесинная паренхима и древесинные волокна выполняют запасающие и опорные функции соответственно.

Флоэма (луб) состоит из проводящих - ситовидных - элементов, сопровождающих клеток (клеток-спутниц) , механических элементов – флоэмных (лубяных) волокон и элементов основной ткани – флоэмной (лубяной) паренхимы .

В отличие от трахеальных элементов проводящие элементы флоэмы и в зрелом состоянии остаются живыми, а их клеточные стенки – первичными, неодревесневшими. На стенках ситовидных элементов имеются группы мелких сквозных отверстий – ситовидные поля , через которые сообщаются протопласты соседних клеток и происходит транспорт веществ. Различают два типа ситовидных элементов – ситовидные клетки и членики ситовидных трубок .

Ситовидные клетки являются более примитивными, они присущи споровым и голосеменным растениям. Ситовидная клетка – это одна клетка, сильно вытянутая в длину, с заостренными концами. Ее ситовидные поля рассеяны по боковым стенкам. Кроме того, ситовидные клетки имеют и другие примитивные признаки: они лишены специализированных сопровождающих клеток и в зрелом состоянии содержат ядра.

У покрытосеменных растений транспорт ассимилятов осуществляют ситовидные трубки (рис. 3.28 ). Они состоят из многих отдельных клеток – члеников , расположенных один над другим. Ситовидные поля двух соседних члеников образуют ситовидную пластинку . Ситовидные пластинки имеют более совершенное строение, чем ситовидные поля (перфорации крупнее и их больше).

В члениках ситовидных трубок в зрелом состоянии отсутствуют ядра, однако они остаются живыми и деятельно проводят вещества. Важная роль в проведении ассимилятов по ситовидным трубкам принадлежит сопровождающим клеткам (клеткам-спутницам) . Каждый членик ситовидной трубки и его сопровождающая клетка (или две-три клетки в случае дополнительного деления) возникают одновременно из одной меристематической клетки. Клетки–спутницы имеют ядра и цитоплазму с многочисленными митохондриями; в них происходит интенсивный обмен веществ. Между ситовидными трубками и прилегающими к ним сопровождающими клетками имеются многочисленные цитоплазматические связи. Считается, что клетки-спутницы вместе с члениками ситовидных трубок составляют единую физиологическую систему, осуществляющую ток ассимилятов.

Рис. 3.28. Флоэма стебля тыквы на продольном (А) и поперечном (Б) срезе : 1 – членик ситовидной трубки; 2 – ситовидная пластинка; 3 – сопровождающая клетка; 4 – лубяная (флоэмная) паренхима; 5 – закупоренная ситовидная пластинка.

Длительность функционирования ситовидных трубок невелика. У однолетников и в надземных побегах многолетних трав – не более одного вегетационного периода, у кустарников и деревьев – не более трех-четырех лет. При отмирании живого содержимого ситовидной трубки, отмирает и клетка-спутница.

Лубяная паренхима состоит из живых тонкостенных клеток. В ее клетках часто накапливаются запасные вещества, а также смолы, танниды и др. Лубяные волокна играют опорную роль. Они присутствуют не у всех растений.

В теле растения ксилема и флоэма расположены рядом, образуя или слои, или обособленные тяжи, которые называют проводящимипучками . Различают несколько типов проводящих пучков (рис. 3.29 ).

Закрытые пучки состоят только из первичных проводящих тканей, они не имеют камбия и далее не утолщаются. Закрытые пучки характерны для споровых и однодольных растений. Открытые пучки имеют камбий и способны к вторичному утолщению. Они характерны для голосеменных и двудольных растений.

В зависимости от взаимного расположения флоэмы и ксилемы в пучке различают следующие типы. Наиболее обычны коллатеральные пучки, в которых флоэма лежит по одну сторону от ксилемы. Коллатеральные пучки могут быть открытыми (стебли двудольных и голосеменных растений) и закрытыми (стебли однодольных растений). Если с внутренней стороны от ксилемы располагается дополнительно тяж флоэмы, такой пучок называется биколлатеральным . Биколлатеральные пучки могут быть только открытыми, они характерны для некоторых семейств двудольных растений (тыквенные, пасленовые и др.).

Встречаются также концентрические пучки, в которых одна проводящая ткань окружает другую. Они могут быть только закрытыми. Если в центре пучка находится флоэма, а ксилема ее окружает, пучок называется центрофлоэмным , или амфивазальным . Такие пучки часто встречаются в стеблях и корневищах однодольных растений. Если в центре пучка располагается ксилема, и ее окружает флоэма, пучок называется центроксилемным , или амфикрибральным . Центроксилемные пучки обычны у папоротников.

Рис. 3.29. Типы проводящих пучков : 1 – открытый коллатеральный; 2 – открытый биколлатеральный; 3 – закрытый коллатеральный; 4 – концентрический закрытый центрофлоэмный; 5 – концентрический закрытый центроксилемный; К – камбий; Кс – ксилема; Ф – флоэма.

Многие авторы выделяют радиальные пучки. Ксилема в таком пучке располагается в виде лучей от центра по радиусам, а флоэма – между лучами ксилемы. Радиальный пучок – характерный признак корня первичного строения.

ПРОВОДЯЩИЕ ТКАНИ

Проводящие ткани транспортируют питательные вещества в двух направлениях. Восходящий (транспирационный) ток жидкости (водные растворы и соли) идет по сосудам и трахеидам ксилемы (рис. 32) от корней вверх по стеблю к листьям и другим органам растения. Нисходящий ток (ассимиляционный) органических веществ осуществляется от листьев по стеблю к подземным органам растения по

специальным ситовидным трубкам флоэмы (рис. 33). Проводящая ткань растения чем-то напоминает кровеносную систему человека, так как имеет осевую и радиальную сильно разветвленную сеть; питательные вещества попадают в каждую клеточку живого растения. В каждом органе растения ксилема и флоэма располагаются рядом и представлены в виде тяжей - проводящих пучков.

Существуют первичные и вторичные проводящие ткани. Первичные дифференцируются из прокамбия и закладываются в молодых органах растения, вторичные проводящие ткани более мощные, формируются из камбия.

Ксилема (древесина) представлена трахеидами и трахеями , или сосудами .

Трахеиды - вытянутые замкнутые клетки с косо срезанными зазубренными концами, в зрелом состоянии представлены мертвыми прозенхимными клетками. Длина клеток в среднем 1 - 4 мм. Сообщение с соседними трахеидами происходит через простые или окаймленные поры. Стенки неравномерно утолщены, по характеру утолщения стенок различают трахеиды кольчатые, спиральные, лестничные, сетчатые и пористые (рис. 34). У пористых трахеид всегда окаймленные поры (рис. 35). Спорофиты всех высших растений имеют трахеиды, а у большинства хвощевидных, плауновидных, папоротниковидных и голосеменных они служат единственными проводящими элементами ксилемы. Трахеиды

выполняют две основные функции: проведение воды и механическое укрепление органа.

Трахеи , или сосуды , - главнейшие водопроводящие элементы ксилемы покрытосеменных растений. Трахеи представляют собой полые трубки, состоящие из отдельных члеников; в перегородках между члениками находятся отверстия - перфорации , благодаря которым осуществляется ток жидкости. Трахеи, как и трахеиды, - это замкнутая система: концы каждой трахеи имеют скошенные поперечные стенки с окаймленными порами. Членики трахей крупнее, чем трахеиды: в поперечнике составляют у разных видов растений от 0,1 - 0,15 до 0,3 - 0,7 мм. Длина трахей от нескольких метров до нескольких десятков метров (у лиан). Трахеи состоят из мертвых клеток, хотя на начальных стадиях формирования они живые. Считают, что трахеи в процессе эволюции возникли из трахеид.

Сосуды и трахеиды помимо первичной оболочки в большинстве имеют вторичные утолщения в виде колец, спиралей, лестниц и т.д. Вторичные утолщения образуются на внутренней стенке сосудов (см. рис. 34). Так, в кольчатом сосуде внутренние утолщения стенок в виде колец, находящихся на расстоянии друг от друга. Кольца расположены поперек сосуда и чуть наклонно. В спиральном сосуде вторичная оболочка наслаивается изнутри клетки в виде спирали; в сетчатом сосуде неутолщенные места оболочки выглядят в виде щелей, напоминающих ячеи сетки; в лестничном сосуде утолщенные места чередуются с неутолщенными, образуя подобие лестницы.

Трахеиды и сосуды - трахеальные элементы - распределяются в ксилеме различным образом: на поперечном срезе сплошными кольцами, образуя кольцесосудистую древесину , или рассеянно более или менее равномерно по всей ксилеме, образуя рассеянно-сосудистую древесину . Вторичная оболочка, как правило, пропитывается лигнином, придавая растению дополнительную прочность, но в то же время ограничивая его рост в длину.

Помимо сосудов и трахеид ксилема включает лучевые элементы , состоящие из клеток, образующих сердцевинные лучи. Сердцевинные лучи состоят из тонкостенных живых паренхимных клеток, по которым питательные вещества оттекают в горизонтальном направлении. В ксилеме присутствуют также живые клетки древесинной паренхимы, которые функционируют в качестве ближнего транспорта, и служат местом хранения запасных веществ. Все элементы ксилемы происходят из камбия.

Флоэма - проводящая ткань, по которой транспортируется глюкоза и другие органические вещества - продукты фотосинтеза от листьев к местам их использования и отложения (к конусам нарастания, клубням, луковицам, корневищам, корням, плодам, семенам и др.). Флоэма также бывает первичная и вторичная.

Первичная флоэма формируется из прокамбия, вторичная (луб) - из камбия. В первичной флоэме отсутствуют сердцевинные лучи и менее мощная система ситовидных элементов, нежели у трахеид. В процессе формирования ситовидной трубки в протопласте клеток - члеников ситовидной трубки появляются слизевые тельца, принимающие участие в образовании слизевого тяжа около ситовидных пластинок (рис. 36). На этом формирование членика ситовидной трубки заканчивается. Функционируют ситовидные трубки у большинства травянистых растений один вегетационный период и до 3-4 лет у древесно-кустарниковых растений. Ситовидные трубки состоят из ряда удлиненных клеток, сообщающихся друг с другом посредством продырявленных перегородок - ситечек . Оболочки функционирующих ситовидных трубок не одревесневают и остаются живыми. Старые клетки закупориваются так называемым мозолистым телом, а потом отмирают и под давлением на них более молодых функционирующих клеток сплющиваются.

К флоэме относится лубяная паренхима , состоящая из тонкостенных клеток, в которых откладываются запасные питательные вещества. По сердцевинным лучам вторичной флоэмы осуществляется также ближняя транспортировка органических питательных веществ - продуктов фотосинтеза.

Проводящие пучки - тяжи, образуемые, как правило, ксилемой и флоэмой. Если к проводящим пучкам примыкают тяжи

механической ткани (чаще склеренхимы), то такие пучки называют сосудисто-волокнистыми . В проводящие пучки могут быть включены и другие ткани - живая паренхима, млечники и др. Проводящие пучки могут быть полными, когда присутствуют и ксилема и флоэма, и неполными, состоящими только из ксилемы (ксилемный, или древесинный, проводящий пучок) или флоэмы (флоэмный, или лубяной, проводящий пучок).

Проводящие пучки первоначально образовались из прокамбия. Выделяют несколько типов проводящих пучков (рис. 37). Часть прокамбия может сохраниться и затем превратиться в камбий, тогда пучок способен к вторичному утолщению. Это открытые пучки (рис. 38). Такие проводящие пучки преобладают у большинства двудольных и голосеменных растений. Растения, имеющие открытые пучки, способны разрастаться в толщину за счет деятельности камбия, причем древесинные участки (рис. 39, 5) примерно в три раза крупнее лубяных участков (рис. 39, 2) . Если при дифференцировке проводящего пучка из прокамбиального тяжа вся образовательная ткань полностью расходуется на формирование постоянных тканей, то пучок называется закрытым (рис. 40). Закрытые

проводящие пучки встречаются в стеблях однодольных растений. Древесина и луб в пучках могут иметь различное взаимное расположение. В связи с этим выделяют несколько типов проводящих пучков: коллатеральные, биколлатеральные (рис. 41), концентрические и радиальные. Коллатеральные , или бокобочные , - пучки, в которых ксилема и флоэма примыкают друг к другу. Биколлатеральные , или двубокобочные , - пучки, в которых к ксилеме примыкают бок о бок два тяжа флоэмы. В концентрических пучках ткань ксилемы полностью окружает ткань флоэмы или наоборот (рис. 42). В первом случае такой пучок называют центрофлоэмным. Центрофлоэмные пучки имеются у стеблей и корневищ некоторых двудольных и однодольных растений (бегония, щавель, ирис, многие осоковые и лилейные). Ими обладают папоротники. Существуют и

промежуточные проводящие пучки между закрытыми коллатеральными и центрофлоэмными. В корнях встречаются радиальные пучки, в которых центральную часть и лучи по радиусам оставляет древесина, причем каждый луч древесины состоит из центральных более крупных сосудов, постепенно уменьшаясь по радиусам (рис. 43). Число лучей у разных растений неодинаково. Между древесинными лучами располагаются лубяные участки. Типы проводящих пучков схематически представлены на рис. 37. Проводящие пучки тянутся вдоль всего растения в виде тяжей, которые начинаются в корнях и проходят вдоль всего растения по стеблю к листьям и другим органам. В листьях они называются жилками. Главная функция их - проведение нисходящего и восходящего токов воды и питательных веществ.

Поделиться