Развитие электроэнергетики в россии. Современные системы электроэнергетики История развития производства электроэнергии

Прогнозный документ «Целевое видение развития электроэнергетики России на период до 2030 г.» был разработан в конце 2006 г. под руководством академика РАН А.Е. Шейндлина ведущими институтами энергетического профиля РАН с привлечением в индивидуальном порядке ряда академиков и других специалистов РАН и иных организаций страны в области энергетики.

Работа выполнена по заказу РАО ЕЭС России, тем не менее она содержит независимые оценки состояния и перспектив развития энергетики страны. Любой прогнозный документ в области развития энергетики на длительный период должен базироваться на анализе, прогнозах и целях развития страны в целом. К сожалению, сегодня в России отсутствует внятно сформулированная экономическая установка, и сиюминутные частные, корпоративные и (реже) государственные интересы доминируют над долгосрочными.

Ввиду неизбежной в этих условиях неопределенности в принятых посылках прогнозы развития страны возможны лишь в сценарных вариантах.

В соответствии с техническим заданием РАО ЕЭС России в качестве таких вариантов были взяты: выработка электроэнергии в размере 2000 и 3000 млрд кВт ч в год. Последующий анализ показал, что выработка электроэнергии в объеме 3000 млрд кВт ч в год на этот период является избыточной, не обеспеченной в должной мере ни кадровыми, ни экономическими ресурсами. Поэтому материалы «Целевого видения» ориентируются прежде всего на достижение в 2030 г. производства около 2000 млрд кВт ч.

Богатые энергетические ресурсы страны и высокий производственный потенциал , созданный во второй половине ХХ века, благоприятствуют обеспечению достаточно высокого уровня энергетической безопасности страны. Однако, с начала 90-х годов лавинообразно нарастает процесс морального и физического старения оборудования тепловой, атомной и гидроэнергетики, электрических сетей, диспетчерского и технологического управления. Выработала проектный ресурс половина мощности ТЭС, значительная часть оборудования электрических сетей, снизилась эффективность использования топлива на ТЭС, она существенно ниже, чем на современных парогазовых и паросиловых установках.

В последние годы в ряде крупных регионов, прежде всего в мегаполисах, интенсивно нарастает дефицит электроэнергии и мощности в связи с ростом потребления в них электроэнергии, наблюдается снижение резерва генерирующих мощностей, пропускной способности электрических сетей и уровня системной надежности ЕЭС России в целом. Не удовлетворяется спрос потребителей. Нарастает число отказов в присоединении к сетям. В период низких зимних температур резервы мощности в Европейской части страны и на Урале уменьшаются в несколько раз и не соответствуют нормативным. Экономика и население страны предельно зависимы от надежности поставок газа из Тюменского региона.

Топливный баланс ТЭС, в котором доля газа в европейских энергосистемах превышает 80 %, в зимнее время, в периоды сильных похолоданий не обеспечен с должной надежностью прежде всего из-за ограничений, вводимых Газпромом. Ключевой задачей ослабления зависимости электроснабжения Европейской части России от поставок природного газа является повышение использования угля, что требует анализа и обоснования оптимального соотношения и способов транспорта первичных энергоресурсов и электроэнергии из Сибири.

Распределение мощностей действующих и в ЕЭС России носит асимметричный характер: практически все 23,2 ГВт сосредоточены в Европейской части страны, а из 45,6 ГВт мощности всех в Сибири и на Дальнем Востоке находятся 26,9 ГВт, что препятствует их эффективному использованию и не обеспечивает требуемую маневренность в Европейской части ЕЭС. Отсутствие электрических связей большой пропускной способности между Европейской и Восточно-Сибирской частями ЕЭС не позволяет оптимизировать режимы работы и говорит о незавершенности инфраструктуры ЕЭС.

Потери электроэнергии по отрасли в целом превысили 107 млрд кВт ч или около 13 % от отпуска электроэнергии в сеть. Их технологическая составляющая около 70 %, более 28 % - коммерческие потери. Таким образом, к новому этапу своего развития энергетика России приходит достаточно изношенной,недостаточно сбалансированной, во многих отношениях технологически отсталой и несамообеспеченной.

Выполненный анализ показал, что уровень ВВП, на который реально следует ориентироваться при разработке экономических прогнозов до 2030 г., составляет около 35000 долл./(чел. год) в ценах 2000 г., что близко к сегодняшнему верхнему уровню передовых промышленно развитых стран (так называемого «золотого миллиарда»). Сегодня экономика страны всецело опирается на сырьевые отрасли и критически зависит от их экспорта при почти полной утрате за последние 15 лет не только конкурентоспособности, но и в ряде отраслей самой возможности производства высокотехнологичной, наукоемкой продукции, в том числе в энергомашиностроительной, электротехнической, приборостроительной областях, электронике и двигателестроении.

В долгосрочном плане для России, как и для любой другой страны, это бесперспективный путь, ведущий к технологической деградации, потере экономической, а затем и политической независимости. Эта тенденция должна быть грамотно и решительно пресечена, прежде всего, из стратегических соображений, несмотря на неизбежное сопротивление сегодняшней экономической «элиты» страны и давление Запада. Стратегически целесообразно сохранение экспорта лишь в объемах, обеспечивающих внутренние инвестиционные потребности страны. Рост ВВП и удержание экспорта энергоресурсов на уровне, обеспечивающем внутренние инвестиционные потребности, невозможны без активной, направляемой и жестко контролируемой государством энергосберегающей политики как в области производства, так и, в первую очередь, потребления энергоресурсов.

Тем самым эффективное развитие энергетики и активное энергосбережение являются неотделимыми компонентами единого процесса. В 1998 -1999 гг. энергоемкость ВВП России превышала средние общемировые показатели в 3,15 раза, а развитых стран - в 3,5-3,7 раза. За период 20002005 гг. энергоемкость российского ВВП уменьшилась на 21,4 %, а электроемкость - на 19,6 %. Сценарием «2000» предусматривается за счет структурной перестройки экономики компенсировать до 65 % необходимого прироста энергопотребления и около 60 % электропотребления. Наряду с использованием структурного фактора в соответствии с ранее принятыми программными документами по энергосбережению должны быть реализованы организационные и технологические меры по экономии топлива и энергии.

Как известно, сравнительно холодные страны (Норвегия, Финляндия, Канада), страны, имеющие протяженные территории (Канада, США, Австралия), и страны, затрачивающие много энергии на транспорт ТЭР (США), имеют в 1,7-2,3 раза более высокий индекс удельного энергопотребления ВВП, чем Европейские страны и Япония. Учитывая неблагоприятные географические условия России (климат, протяженность территории), даже при самых энергичных усилиях в области энергосбережения и структурных преобразований экономики вряд ли осуществимо желание выйти в 2030 г. на уровень удельного энергопотребления ниже 0,35 т у.т./1000 долл. ВВП. (Заметим, что уровень США и Канады 2000 г. - 0,33 и 0,45 т у.т./1000 долл. ВВП, соответственно.) Ввиду предстоящего резкого сокращения численности трудоспособного населения требуемый рост ВВП может быть обеспечен лишь при резком увеличении производительности труда, обеспечиваемом достаточно высоким электропотреблением на уровне 0,32 -0,34 кВт ч/долл. ВВП, что будет соответствовать выходу к 2030 г. на уровень ВВП в 35000-37000 долл./(чел. год) в ценах 2000 г. с потребной выработкой электроэнергии около 1800-2000 млрд кВт ч/год. Возможность подобного среднего роста ВВП на уровне 5,9-6 % в год в течение 25 лет представляется достаточно сложной задачей, а указанные цифры предельными и трудно достижимыми.

Совокупные показатели развития производства электрической и тепловой энергии приведены на рис. 1 и в табл. 1. Отметим, что прирост отпуска тепловой энергии существенно меньше прироста выработки электроэнергии. Несмотря на существенно отличающиеся темпы экономического и социального развития отдельных регионов (в известной степени совпадающих с Федеральными округами), соотношения вкладов этих укрупненных регионов в производство и потребление ВВП, а также генерацию электроэнергии не претерпит радикальных изменений. Современные наукоемкие производства будут развиваться более интенсивно в Европейской части страны, а энергоемкие и сырьевые отрасли - в Сибири. Суммарная мощность электростанций страны, необходимая для выработки 2000 млрд кВт ч в 2030 г., составляет 370-380 ГВт, из которых около 70 ГВт должны быть установлены на и примерно столько же на ГЭС. Из 2000 млрд кВт ч электроэнергии 530-550 млрд кВт ч должны быть выработаны на (27 %), 250 млрд кВт ч на (12-13 %), остальные на ТЭС (рис. 2). Вклад электростанций, использующих , будет невелик, хотя их роль в автономном энергоснабжении существенно возрастет.


Согласно прогнозу структуры топливного баланса электроэнергетики в 2030 г,. для обеспечения необходимой выработки электроэнергии на ТЭС потребуется 340-360 млн т у.т. органического топлива. При этом развитие атомной энергетики приобретает исключительно важную роль для замыкания топливного баланса Европейской части страны; столь же высока роль гидроэнергетики для Сибири и Дальнего Востока. Фактически Европейская часть страны и Урал являются и будут оставаться остродефицитными в отношении снабжения топливом регионами, положение которых в условиях рыночной экономики мало отличается от большинства Европейских стран. Наличие ограничений на поставки природного газа для нужд энергетики предопределяет возрастание доли угля в топливном балансе электростанций (до 29 % в 2030 г.). Запасы органического топлива в России в целом достаточно велики.

Мы еще не вышли за рамки их начального использования. Однако уже примерно к 2012 г. по нефти и к 2015-2020 гг. по газу обязателен ввод новых месторождений (расположенных в менее доступных районах и экономически менее выгодных). Объем геологоразведочных работ на нефть и газ должен быть резко увеличен. В Европейской части страны нужно обратить внимание на целесообразность использования многочисленных источников местного топлива (сланцы, местные угли, малые газовые месторождения). Важно подчеркнуть, что из-за инерционности вводов необходимых мощностей на и и неподготовленности к быстрому вводу высокоэффективных угольных ТЭС до 2010 г. для преодоления сегодняшних дефицитов в поставке электроэнергии чрезвычайно важен форсированный ввод ПГУ и соответственно некоторое увеличение поставок газа энергетике. При оценке развития атомной энергетики учитывалась возможность продления ресурса существующих до 45 лет. При этом в 2030 г. из числа действующих сегодня 23 ГВт мощности в эксплуатации останутся 10 ГВт. Подавляющее большинство новых станций необходимо построить в Европейской части страны. Суммарная мощность достигнет ~ 70 ГВт.

Начиная с 2012 г. на смену реакторам ВВЭР -1000 придут модифицированные реакторы мощностью около 1240 МВт (так называемый проект АЭС-2006), а еще через несколько лет - реакторы ВВЭР -1500 -1600. Для размещения новых мощностей целесообразно использовать намеченные в 80-е годы площадки. Для обеспечения более полной загрузки (увеличения КИУМ) их строительство целесообразно сопровождать вводом гидроаккумулирующих станций, возможные площадки размещения которых сегодня известны. Мощности к 2030 г. должны быть увеличены примерно в 1,5 раза и достигнуть уровня 65 ГВт (в том числе после соответствующей реконструкции сохранятся примерно 46 ГВт на действующих ГЭС). Практически весь ввод новых мощностей должен произойти в Сибирском и Дальневосточном регионах. В Европейской части, где потенциал гидроэнергетики в известной мере исчерпан, будут построены каскады сравнительно малой мощности на Кавказе и в Карелии.

Для электроснабжения Европейской части намечается сооружение Туруханской (Эвенкийской) на реке Нижняя Тунгуска мощностью до 12 ГВт, связанной линией постоянного тока 750 кВ с сетью Европейской части страны. Всего предполагается довести передачу в Европейскую часть по двум ЛЭП до 120 млрд кВт ч электроэнергии. Крупные должны быть построены на Ангаре и в Бурятско-Читинском регионе для обеспечения энергоемких производств региона и частично экспорта. Необходимо масштабное строительство гидроаккумулирующих станций в Европейской части общей мощностью около 10 ГВт (3-4 ГВт в ближайшей перспективе), которые обеспечат экономичное суточное регулирование нагрузки в сети и будут способствовать работе атомных станций в базовом режиме.

Сегодня тепловые электростанции играют доминирующую роль в производстве электроэнергии в стране. Их мощность приближается к 140 ГВт, из которых более 95 ГВт приходится на установки, работающие на природном газе, и примерно 45 ГВт на установки, использующие твердое топливо. Характерен, как результат последовательно осуществлявшегося в течение многих лет курса на комбинированную выработку тепла и электроэнергии, высокий удельный вес (около 55 % установленной мощности ТЭС). К 2030 г. необходимо заменить все действующее сегодня основное оборудование ТЭС. Доминирующая роль тепловой энергетики сохранится, как сохранится в Европейской части страны преобладание ТЭС на природном газе.

Существенно более высокий к.п.д. парогазовых установок (ПГУ) позволит выработать большую мощность при том же потреблении природного газа, а низкий удельный объем главного корпуса для ПГУ мощностью 170-540 МВт (0,7-0,65 м3/кВт) позволит разместить их в главных корпусах, ранее занимаемыхконденсационными блоками 100-200-300-500 МВт (с удельным объемом 1,0-0,725 м3/кВт). То есть, при создании новых мощных КЭС на газе должны активно использоваться площадки, инфраструктура и корпусы существующих ГРЭС при сохранении или весьма умеренном увеличении потребления природного газа.

Новые и реконструируемые угольные блоки в Европейской части страны в силу дефицита топлива в этом регионе должны быть ориентированы на использование пара суперсверхкритических параметров (ССКП). При сооружении станций в Сибири на базе дешевых углей целесообразно по технико-экономическим соображениям остановиться на отработанных сверхкритического давления (СКД) параметрах с использованием модернизированного, более эффективного основного и вспомогательного оборудования. Мощность вновь сооружаемых угольных станций в Европейской части страны в варианте производства 2 трлн кВт ч электроэнергии должна составить 1015 ГВт (при мощности -70 ГВт, увеличении потребления газа на 15 % и передаче около 15 ГВт мощности по ЛЭП из восточных районов). Если говорить об освоении потенциала КАТЭК, то, наряду со строительством КЭС СКД (здесь также по технико-экономическим соображениям, видимо, целесообразно остановиться на СКД параметрах), целесообразно развивать энерготехнологические комплексы с выработкой, наряду с электроэнергией, моторного топлива и других ценных продуктов. В техникоэкономическом плане эти установки являются наиболее выгодными.

Во всех случаях при широком применении на начальном этапе импортного и лицензионного оборудования (ПГУ, котлы с кипящим слоем и т.п.) должен быть форсирован выпуск отечественного оборудования этого класса. Следует подчеркнуть, что ориентация на массовые закупки основного энергетического оборудования за рубежом содержит опасность полной ликвидации отечественной энергомашиностроительной отрасли. Расчеты показывают целесообразность увеличения поставок газа электростанциям Европейской части страны в объеме, превышающем сегодняшний на 15-20 %. В противном случае, скорее всего, придется увеличивать ввод мощностей на АЭС. Важным вопросом является проблема выброса парниковых газов (CO2) и участия в Киотском протоколе. Эта проблема может найти правильное решение лишь с учетом общей политической обстановки в мире.

Повышенная активность в этом вопросе при недоказанной в научном плане связи потепления климата с выбросами парниковых газов (заметим, что для России климат в целом будет меняться в благоприятную сторону) и игнорировании Киотского протокола США, Китаем и Индией - странами, дающими наибольшие выбросы CO2, вряд ли отвечает интересам России. В России системы централизованного теплоснабжения (СЦТ) работают более 70 лет. Максимальные темпы развития СЦТ в России пришлись на 50-е -80-е годы ХХ века, когда они стали самыми большими жизнеобеспечивающими инженерными системами городов. В 2000 г. на было сосредоточено 63,2 из 131,4 ГВт электрической мощности ТЭС.

В целом по стране от в СЦТ поступало около 4,1 из 8,7 млрд ГДж тепла, примерно две трети которого шло на промышленные нужды. Согласно прогнозу, годовой отпуск тепла от централизованных источников (их доля в общем отпуске тепла превышает 80 %) может возрасти по сравнению с 2000 г. в 1,5-1,8 раза: с 1425 млн Гкал в 2000 г. до 2050 Гкал в 2030 г. Необходимо учитывать то, что в перспективе основным видом топлива в СЦТ по условиям экологии, как и в настоящее время, будет оставаться природный газ, высокая эффективность использования которого рассматривается как одна из ключевых задач при производстве электроэнергии и тепла. Условия функционирования отдельных резко разнятся, и решения по их модернизации должны быть индивидуализированы. При этом акцент должен быть сделан на оптимизацию схем теплоснабжения и режимов отпуска тепла с использованием всех его источников (ТЭЦ, районных котельных, мелких производителей тепла).


Тепловые распределительные сети, связывающие с потребителями, создавались многие десятилетия и в них вложены огромные средства. Экономически нереально (и нерационально) изменить в короткие сроки структуру централизованного теплоснабжения крупного городского поселения, нужно грамотно использовать все источники теплоснабжения. Для вновь создаваемых источников теплоснабжения акцент должен быть сделан на ГТУ-ТЭЦ умеренной мощности (включая надстройки действующих водогрейных котлов районных станций теплоснабжения - РТС), причем с таким расчетом, чтобы, в первом приближении, количество тепла отработанных газов ГТУ круглогодично покрывало нагрузку горячего водоснабжения, а отопительная нагрузка обеспечивалась за счет сжигания дополнительного топлива. Эти ГТУ-ТЭЦ должны быть максимально приближены к потребителю.



Рекомендуется широкомасштабное применение систем отопления и горячее водоснабжение (ГВС) на базе тепловых насосов, прежде всего, в крупных городах, где достаточно много источников низкопотенциального тепла. Выше были рассмотрены вопросы, касающиеся генерации электроэнергии. Не менее острыми являются проблемы ее передачи и распределения. Единая национальная энергетическая система (ЕНЭС) объединяет энергетику России, обеспечивая параллельную работу основных электростанций и узлов нагрузки, осуществляет связь ЕЭС России с энергосистемами других стран. В настоящее время ЕНЭС включает в себя электрические сети напряжением 330-750 кВ и в соответствии с утвержденными критериями часть линий электропередачи напряжением 220 кВ.

По существу, ЕНЭС представляет собой основную системообразующую электрическую сеть, то есть включает в себя все межсистемные связи и основные электрические линии электропередачи. Сегодня ЕНЭС обеспечивает, в целом, достаточно высокий уровень надежности энергоснабжения потребителей и устойчивость работы . Однако при этом существует ряд острых проблем их функционирования, связанных как с ихтехнологическим состоянием, так и с новыми формами функционирования сети в рыночных условиях. К основным технологическим проблемам можно отнести следующие:

Большой объем морально и физически устаревшего оборудования линий электропередачи и подстанций.

Недостаточная пропускная способность межсистемных и системообразующих электрических сетей, из-за которых перетоки мощности близки или достигают предельных значений, а ряд энергетических мощностей (ОЭС Сибири, ОЭС Средней Волги и Центра) остаются неиспользованными.

Слабая управляемость электрической сети и недостаточный объем и качество устройств регулирования и реактивной мощности.

Прогрессирующее отставание от развитых стран по ряду технологий и по техническому уровню определенных типов сетевого оборудования и систем управления, низкая степень автоматизации сетевых объектов.

Устаревшая нормативная база. При разработке «Видения» рассмотрены два сценария развития основной электрической сети ЕЭС России: первый - развитие электропередач только на переменном токе в соответствии с используемыми сейчас шкалами напряжений 330-750 кВ (зона Северо-Запада, частично Центра и Юга) и 220-500-1150 кВ (остальная часть ЕЭС России); второй - использование передач постоянного тока (ППТ) для выдачи мощности удаленных генерирующих узлов и для межсистемных электрических связей (МЭС) на уровне ЕЭС России.

Полученные структуры основной электрической сети для каждого из вариантов представлены на рис. 3 и 4. Сеть 750 кВ должна развиваться в европейской части ЕЭС России для усиления связей между ОЭС Северо-Запада и Центра, выдачи мощности АЭС, находящихся в этой зоне. Сети 500 кВ должны быть использованы для присоединения ОЭС Востока к ЕЭС России, усиления основной сети в ОЭС Северного Кавказа, Центра, Поволжья, Урала, Сибири и Востока, а также развития межсистемных связей между региональными ОЭС, в первую очередь, между ОЭС Северного Кавказа и Центра, ОЭС Центра, Поволжья и Урала. Основные тенденции в развитии распространенных в большей части энергосистем сетей 220 кВ состоят в усилении их распределительных функций, сокращении длины участков, повышении плотности электрических сетей с целью повышения надежности электроснабжения потребителей и выдачи мощности небольших и средних электростанций.

Основным направлением в развитии сети 110 кВ будет дальнейший охват ими территории России с целью повышения надежности электроснабжения потребителей. Применение линий электропередачи и вставок постоянного тока может в перспективе рассматриваться как средство транспортировки по этим линиям больших потоков электроэнергии на дальние расстояния и создания управляемых элементов в кольцевых сетях переменного тока, что совместно с широким использованием устройств FACTS существенным образом повысит управляемость ЕЭС России.

Для выдачи мощности Туруханской необходимо ЛЭП постоянного тока на запад в ОЭС Урала и далее в ОЭС Центра, на юг в район Красноярска и на юго-восток до Усть-Илимской ГЭС. Надо восстановить действовавшую до начала 90-х годов связь ОЭС Сибири и ОЭС Урала с ОЭС Северного Казахстана. Также должен быть рассмотрен вопрос о мощной связи ОЭС Сибири и ОЭС Урала, проходящей по территории России, в том числе варианта на постоянном токе. Этот вопрос должен рассматриваться в контексте проблем увеличения доли угля в энергетике и оптимизации вариантов использования углей Кузбасса, с учетом транспортных возможностей.

В результате основная электрическая сеть в европейской части ЕЭС России, включая Урал, будет представлять собой развитую сеть 220(330)-500(750) кВ с приемными подстанциями ЛЭП постоянного тока от Туруханской ГЭС. Основная электрическая сеть ОЭС Сибири и Востока будет представлять собой развитую основную конфигурацию ЛЭП 220-500 кВ в основном в широтном направлении с приемными подстанциями ЛЭП постоянного тока в районе Красноярска и УстьИлимской от Туруханской ГЭС.

Основные положения обеспечения надежности функционирования ЕЭС России сводятся к следующему:

Адаптации задачи надежности к рыночным условиям, вводу в действие экономических механизмов управления надежностью и обеспечению приоритета надежности перед рыночными обязательствами при угрозе нарушения или при нарушении электроснабжения, осуществлению технической экспертизы всех моделей рынка с проверкой их влияния на надежность энергоснабжения;

Обеспечению безопасности систем жизнеобеспечения городов (мегаполисов) при нарушении их электроснабжения, в том числе путем саморезервирования ответственных потребителей;

Обеспечению устойчивости работы электростанций при их выделении из энергосистемы на местную нагрузку, включая сохранение собственных нужд;

Обеспечению способности ЕЭС противостоять расчетным возмущениям без нарушения системной надежности и надежности электроснабжения конечных потребителей;

Выработке альтернативы принципу солидарной ответственности за надежность в региональном разрезе, существовавшему в дореформенный период. Оценки необходимых пропускных способностей электрических связей в ЕЭС приведены в табл. 2.Ключевым вопросом реализации любой стратегии наращивания производства электроэнергии являются возможности энергомашиностроения. В «Видении» определены масштабы потребного производства энергетического оборудования по годам для производства 2 трлн кВт ч электроэнергии в 2030 г.

На заключительном этапе потребуется производство в год:

Три реакторных блока типа ВВЭР-1500;

До 8 ГВт паровых турбин для ТЭС;

Примерно 4,5 ГВт паровых турбин для АЭС;

4,5-5 ГВт газовых турбин;

Около 1,3 ГВт гидротурбин;

Общее количество паровых котлов на 20-22 тыс. т пара в час.

Эти цифры не учитывают объемов, необходимых для модернизации остающегося в эксплуатации оборудования. При капитальной модернизации и полном восстановлении производственных мощностей существующих заводов энергетического машиностроения представляется возможным обеспечение выпуска и поставки оборудования по всей линейке и в количестве, необходимом для выработки 2 трлн кВт ч электроэнергии в год.

При этом представляется целесообразным создание на базе одного-двух современных заводов авиадвигателей, имеющих полнокровные конструкторские бюро и владеющих современными технологиями газотурбостроения, объединений по производству современных газовых турбин большой мощности для энергетики. Дополнительно на муниципальном уровне ежегодно должно будет вводиться 0,7-1,2 ГВт мощности в виде 15-30 МВт газотурбинных надстроек котельных (районных станций теплоснабжения). Производство электрогенераторов должно достигнуть 13 -15 ГВт в год. Организация производства электротехнической аппаратуры на полевых транзисторах для обеспечения надежной, экономичной и маневренной работы электрических сетей, элементной базы современных АСУТП и ряда других позиций энергетического и электротехнического оборудования требует специальных усилий.

Для создания необходимого для выработки в 2030 г. 2000 млрд кВт ч электроэнергии генерирующих мощностей и соответствующих электрических сетей потребуются значительные инвестиции. Оценка суммарных инвестиций дается в табл. 3. Величина удельных капзатрат выбрана на базе существующих мировых цен и тенденций их изменений с учетом стоимости рабочей силы в России. Потенциально существуют несколько путей инвестирования. В «Видении» рассмотрены три из них: за счет средств частного инвестора; за счет дополнительной эмиссии акций; за счет опережающей инвестиционной составляющей тарифа через специальный инвестиционный фонд.

Наиболее затратным является первый путь, так как банки запрашивают высокий процент на заемный капитал (12 %), а частный инвестор требует ускоренного возврата капитала (за 10 лет и менее). В итоге ежегодная инвестиционная компонента затрат стоимости выработки электроэнергии лежит в пределах 18-27% от удельных капитальных затрат, что приводит (при числе часов использования максимума установленной мощности 6000) к «инвестиционной составляющей» стоимости выработки электроэнергии в 4,2 цент/(кВт ч). Несколько меньше (~3,4 цент/(кВт ч)) «инвестиционная составляющая» стоимости выработки электроэнергии в варианте с дополнительной эмиссией акций, где в стоимость производства электроэнергии ежегодно отчисляется около 13% удельных капзатрат.

Обе вышеуказанные цифры достаточно велики. Кроме того, оба варианта таят в себе скрытые опасности. Стоимость выработки электроэнергии не может быть повышена только для вновь введенных агрегатов или для станций, где они установлены. Примерно к той же отпускной цене «подтянутся» и старые станции с весьма низкой амортизационной составляющей затрат в стоимости выработки электроэнергии. То есть, в условиях существования или угрозы дефицита мощности и бесконтрольной либерализации рынка электроэнергии создаются объективные условия для получения сверхприбыли и необоснованного изъятия средств у потребителя.

Заметим, что к тому же, в варианте с дополнительной эмиссией акций, из-за чрезвычайно заниженного уставного капитала и капитализации существующих станций лицо, скупившее доппакет акций, становится владельцем непропорционально большой доли общей стоимости станции и, соответственно, получателем непропорционально высокой доли доходов. Наименее затратным является третий путь, когда в тариф закладывается только соответствующая ежегодная доля необходимых инвестиций (в данном случае «инвестиционная составляющая» равна ~1,6 цент/(кВт ч)).

Государство должно образовать из этой составляющей специальный Инвестиционный фонд и осуществлять контроль за его расходованием. Нужно особо подчеркнуть, что при всех обстоятельствах в реализации стратегии определяющую (можно сказать, критическую) роль будет иметь воссоздание кадрового потенциала отрасли. Без принятия экстраординарных мер квалифицированный кадровый потенциал (научный, конструкторский, монтажный, производственный) будет полностью утрачен в ближайшие 5 лет. Для решения перечисленных вышепроблем необходимо разработать специальную мобилизационную программу, реализация которой должна быть возложена на специальный государственный орган, обладающий властью и финансовыми возможностями. Помимо административных и координирующих функций, этот орган должен оперативно решать проблемы, в том числе касающиеся финансового обеспечения, предусмотренные программой.

Государство должно взять на себя выполнение следующих функций:

— гарантию сбалансированного и самодостаточного развития электроэнергетики страны, способной как в краткосрочной, так и в долгосрочной перспективе удовлетворять потребности общества в электрической и тепловой энергии;

— руководство разработкой целеполагающих принципов и научных основ функционирования энергетики, прогнозирования ее развития, определением базовых количественных показателей, принципиальных подходов к формированию энергобалансов;

— совершенствование нормативно-правового обеспечения энергетики, разработку национальных стандартов, касающихся производства, снабжения и потребления электроэнергии и тепла в условиях рыночной экономики;

— координацию работы по оптимальному размещению генерирующих мощностей, оптимизации единой энергетической системы России, обеспечению надежности ее функционирования;

— обеспечение экологической политики.;

— обеспечение подготовки научных и инженерных кадров энергетики (включая атомную энергетику), энергомашиностроения, электротехнической и смежной отраслей, рабочих кадров высшей квалификации в энергомашиностроении, монтажных и строительных организациях;

— обеспечение НИОКР, развитие соответствующих отраслевых и академических научно-исследовательских институтов, создание пилотных и опытно-промышленных установок и финансирование их работы;

— восстановление и подъем отечественного энергомашиностроения; долевое (не менее 50 %) участие в разработке новой техники;

— законодательное, организационное, научное и частично финансовое обеспечение политики энергосбережения, являющейся неотделимой компонентой планов развития энергетики;

— создание благоприятных условий для инвестиций в энергетику с учетом длительного срока окупаемости;

— разработку и реализацию ценовой политики в энергетике, направленной на совершенствование структуры топливного баланса и тарифов на реализуемую продукцию. Контроль величины и расходования инвестиционной компоненты тарифов;

— обеспечение безопасности атомной энергетики. В ноябре 2000 г. Правительством РФ была одобрена Энергетическая стратегия России на период до 2020 г., ее уточненная редакция была утверждена Правительством РФ 22 мая 2003 г.

Общие (макроэкономические) показатели Стратегии выполняются с превышением наивысшего из четырех рассмотренных в ней сценариев развития. Это касается роста ВВП и объема промышленного производства (в денежном выражении), снижения показателей энергоемкости ВВП и некоторых других индексов.

Вместе с тем, все вышеуказанные позитивные сдвиги имеют своим основным источником одно - неожиданный для всех гигантский рост цен на экспортируемую нефть (прежде всего) и газ и заметное увеличение физического объема экспорта энергоресурсов против предусмотренного Стратегией, а структурные сдвиги в экономике, выражающиеся в изменении соотношения доли ВВП, произведенной в сфере услуг и в производственной сфере, в пользу первой, наряду с закрытием нерентабельных производств обусловлены продолжающейся стагнацией производственной сферы за исключением топливодобывающих отраслей и металлургии. В итоге, рост макроэкономических показателей сочетается с медленным восстановлением машиностроения, нарастающим отставанием приборостроения и в целом наукоемких, инновационных производств, не подкрепляется вводом новых мощностей и масштабной реконструкцией действующих производств, разведкой и разработкой новых месторождений, сопровождается полным пренебрежением к развитию научных исследований и образования. Все вышесказанное в полной мере относится к энергетике и обеспечивающим ее энергомашиностроению и науке.

Запоздалые усилия по экстренному вводу новых генерирующих мощностей и сетей во всех своих ключевых элементах (газовые турбины, современные котлы с ЦКС, легированные стали для котлов, автоматика, полупроводниковые приборы для сетей, многие позиции вспомогательного оборудования) опираются на масштабные закупки зарубежного оборудования, превращение отечественных предприятий в «отверточные» производства, предполагают расходование на эти цели в 1,5-2 раза завышенные инвестиции. Данное специфическое состояние - благопристойные макроскопические показатели при фактической разрухе - потребовали нового рассмотрения состояния энергетики, ее перспектив. Представленное «Видение» учитывает положительные стороны Энергетической стратегии, многие общие положения которой и конкретные цифры хорошо коррелируют с «Видением». Вместе с тем, эти два документа расходятся в основном в путях решения проблемы.

Если Энергетическая стратегия видит эти пути в «формировании цивилизованного энергетического рынка и недискриминированных экономических взаимоотношениях его субъектов между собой и государством, при том, что государство, ограничивая свои функции как хозяйствующего субъекта, усиливает свою роль в формировании инфраструктуры как регулятора рыночных отношений», то «Видение» полагает, что сегодня роль государства в реализации задач энергетики должна быть определяющей и не ограничивающейся только созданием благоприятного климата.

Электроэнергетика, тепловая и атомная». Вначале мы вспомним, что такое электроэнергетика и какую роль она играет в жизнеобеспечении страны. Затем рассмотрим производство электроэнергии в России. Познакомимся с тепловыми и атомными электростанциями, и обсудим их сходства и отличия, достоинства и недостатки.

Тема: Общая характеристика хозяйства России

Урок: Электроэнергетика. Тепловая и атомная энергетика

Электроэнергетика - это часть топливно-энергетического комплекса, которая занимается производством электрической энергии и передачей её потребителю.

Значение электроэнергетики очень велико в хозяйстве страны и её людей.От электроэнергетики зависит развитие производства и обеспечение жизнедеятельности населения. Она воздействует на территориальное размещение промышлености. Россия занимает четвёртое место в мире по производству электроэнергии, уступая при этом США, Японии, Китаю.

Рис. 1. Страны-лидеры по производству электроэнергии

В России электроэнергия производится на электростанциях четырёх типов: тепловых, гидравлических, атомных и на электростанциях, использующих альтернативных источников энергии.

Рис. 2. Производство электроэнергии в России на электростанциях различных типов

Наибольшее количество электроэнергии производится на тепловых электростанциях. Они являются самым распространённым видом электростанций в России. Тепловые электростанции - это самые старые электростанции в России.

Рис. 3. Тепловые электростанции

Для своей работы электростанции используют: уголь, природный газ, мазут, сланцы, торф. При этом тепловая энергия преобразуется в электрическую. У тепловых электростанций большое количество недостатков: тепловые электростанции для своей работы требуют огромного количества трудовых ресурсов, которые необходимы для обслуживания этих станций; ресурсы, которыми пользуются тепловые электростанции, исчерпаемы и невозобновимы; тепловые электростанции очень плохо регулируются, для их остановки и запуска требуется очень много времени; кроме того, при сгорании топлива выделяется множество вредных веществ, которые уходят в атмосферу, поэтому электростанции являются главным загрязнителем атмосферного воздуха. Но у тепловых электростанций есть большие достоинства, которые делают их самыми распространёнными в России и в мире. Они очень легко и быстро сооружаются, вырабатывают электроэнергию круглогодично без сезонных колебаний в количестве вырабатываемой электроэнергии, кроме того, они могут быть построены как у источников сырья, так и около потребителя.

Тепловые электростанции бывают двух видов: конденсационные и теплоэлектроцентрали . Конденсационные самые популярные электростанции.Если они обслуживают большие районы и вырабатывают большое количество электроэнергии, то их называют государственными районными электростанциями или ГРЭС. В европейской части России ГРЭС используют чаще мазут и уголь.

Рис. 4. Рефтинская ГРЭС

Теплоэлектроцентрали - это тип станций, который вырабатывает не только электрическую энергию, но и производит тепло, которое направляется к потребителю.

Рис. 5. Теплоэлектроцентраль (ТЭЦ)

Особенностью географии теплоэнергетики является то, что они располагаются повсеместно. Самые крупные являются Сургутская ГРЭС, Костромская ГРЭС и Рефтинская ГРЭС.

Рис. 6. Тепловые электростанции России ()

Атомные электростанции - это второй тип электростанций, которые производят электроэнергию на территории России. Первая АЭС была построена в 1954 году в городе Обнинске.

Рис. 7. Атомная электростанция (АЭС)

В настоящее время АЭС производит 15% электроэнергии в России. В сравнении с ТЭС, АЭС имеют ряд преимуществ: не требуют постоянных и больших поставок топлива, ведь один килограмм урана заменяет 2.500 тонн угля, данный тип электростанций удобно располагать в электродефицитных местах и удалённых районах, а при безаварийной работе атомные электростанции оказывают незначительное воздействие на окружающую среду. Способ эксплуатации АЭС в Чернобыле и станции Фукусима, показал, что данный тип электростанций имеет ряд недостатков, прежде всего - это тяжелые последствия, которые происходят после аварий на АЭС. Кроме того, до сих пор не разработаны технологии утилизации отходов, которые образуются при работе АЭС. Станции плохо регулируются: для их остановки и включения требуется несколько недель.

Рис. 8. Действующие электростанции России ( ) В настоящий момент в России действуют 10 АЭС. Основная часть электростанций находится в Европейской части страны - это Нововоронежская АЭС, Ленинградская АЭС, на Урале располагается Белоярская АЭС, на севере Европейской части располагается Кольская АЭС, а на Чукотке Билибинская АЭС.

  1. В.П. Дронов, В.Я. Ром. География России: население и хозяйство. 9 класс.
  2. В.П. Дронов, И.И. Баринова, В.Я. Ром, А.А. Лоюжанидзе. География России: хозяйство и географические районы. 9 класс.
  1. Как это сделано, как это работает (). Как работает тепловая электростанция
  2. РИА новости (). Как устроена АЭС
  3. Википедия (). Схема работы АЭС
  4. РИА новости (). Последствия катастрофы на Чернобыльской АЭС
  5. Единая коллекция цифровых образовательных ресурсов (). Топливно-энергетический комплекс: Энергетическая промышленность

Знание истории развития электроэнергетики помогает понять логику выбора направления её развития, природу возникающих перед ней проблем и возможные способы их решения.

Становление электроэнергетики как самостоятельной отрасли промышленности и экономики

История науки и техники ведет отсчет развития электроэнергетики с 1891 г., когда состоялось испытание трехфазной системы электропередачи на международной электротехнической выставке в г. Франкфурте-на-Майне .

На гидроэлектростанции в Лауфене электрическая энергия вырабатывалась гидроагрегатом, состоящем из турбины, конической зубчатой передачи и трехфазного синхронного генератора (мощность 230 кВ А, частота вращения 150 об/мин, напряжение 95 В, соединение обмоток звездой). В Лауфене и Франкфурте находилось по три трансформатора, погруженных в баки, наполненные маслом.

Трехпроводная линия была выполнена на деревянных опорах со средним пролетом около 60 м. Медный провод диаметром 4 мм крепился на штыревых фарфоро-масляных изоляторах. Интересной деталью линии являлась установка плавких предохранителей со стороны высокого напряжения: в начале линии в разрыв каждого провода был включен участок длиной 2,5 м, состоявший из двух медных проволок диаметром 0,15 мм каждая. Для отключения линии во Франкфурте посредством простого приспособления устраивалось трехфазнос короткое замыкание, плавкие вставки перегорали, турбина начинала развивать большую скорость, и машинист, заметив это, останавливал ее.

На выставочной площадке во Франкфурте был установлен понижающий трансформатор, от которого при напряжении 65 В питались 1000 ламп накаливания, расположенных на огромном щите. Здесь же был установлен трехфазный асинхронный двигатель ДоливоДобровольского, приводивший в действие гидравлический насос мощностью около 100 л. с., питавший небольшой искусственный водопад. Одновременно с этим мощным двигателем М.О. Доливо-Добровольский экспонировал асинхронный трехфазный двигатель мощностью около 100 Вт с вентилятором на его валу и двигатель мощностью 1,5 кВт с сидящим на его валу генератором постоянного тока.

Испытания электропередачи, которые проводились Международной комиссией, дали следующие результаты: минимальный КПД электропередачи (отношение мощности на вторичных зажимах трансформатора во Франкфурте к мощности на валу турбины в Лауфене) - 68,5 %, максимальный - 75,2 % при линейном напряжении около 15 кВ, а при напряжении 25,1 кВ максимальный КПД составил 78,9 %.

Результаты испытаний электропередачи Лауфен-Франкфурт не только продемонстрировали возможности передачи энергии на большие расстояния в виде электрической энергии, но и поставили точку в давнем споре сторонников постоянного либо переменного тока в пользу переменного тока.

Создание трехфазной системы - важнейший этап в развитии электроэнергетики и электрификации. После закрытия Франкфуртской выставки электростанция в Лауфене перешла в собственность г. Хейльборна, расположенного в 12 км от Лауфена, и была пущена в эксплуатацию в начале 1892 г. Электроэнергия использовалась для питания всей городской осветительной сети, а также ряда небольших заводов и мастерских. Понижающие трансформаторы устанавливались непосредственно у потребителей.

В том же 1892 г. была сдана в эксплуатацию линия Бюлах- Эрликон (Швейцария). Электроэнергия, вырабатываемая гидроэлектростанцией с гремя трехфазными генераторами мощностью 150 кВт каждый, построенная у водопада в г. Бюлахе, передавалась на расстояние 23 км для электроснабжения завода.

Вслед за этими первыми установками в короткое время были построены ряд электростанций; наибольшее их число находилось в Германии.

В США (в Калифорнии) первая трехфазная установка была сооружена в конце 1893 г. Темпы внедрения трехфазной системы в Америке вначале были заметно ниже, чем в Европе, из-за настойчивых попыток одной из крупнейших американских фирм - компании «Всстин- гауз» - развернуть работы по сооружению электростанций и электрических сетей но системе Теслы, т. е. двухфазных.

Для переходного периода в любой области техники характерны попытки комбинирования устаревающих и новых технических решений. Так, в течение почти двух десятилетий делались попытки «примирить» трехфазные системы с другими системами. В эти годы существовали электростанции, на которых одновременно работали генераторы постоянного, переменного однофазного, двухфазного и трехфазного тока или любая их комбинация. Напряжения и частоты были различными, потребители питались по раздельным линиям. Попытки спасти устаревающие системы, а вместе с ними и освоенное заводами электрооборудование, приводили к созданию комбинированных систем.

Но уже начиная с 1901-1905 гг. в основном сооружаются трехфазные электростанции, которые вначале преимущественно были станциями фабрично-заводского типа. Трехфазная техника позволяла строить крупные электростанции иа месте добычи топлива или па подходящей реке, а вырабатываемую энергию транспортировать по линиям электропередачи в промышленные районы и города. Такие электростанции стали называть районными.

Первые районные электростанции были построены во второй половине 90-х гг. XIX в., а в следующем столетии они составили основу развития электроэнергетики. Первой районной электростанцией считают Ниагарскую ГЭС. Строительство таких электростанций приобрело широкий размах с начала XX в. Этому способствовал рост потребления электроэнергии, связанный с внедрением в промышленность электропривода, развитием электрического транспорта и электрического освещения городов. Электрические станции становились крупными промышленными предприятиями, сети разных станций объединялись, создавались первые энергетические системы. Под энергетической системой стали понимать совокупность электростанций, линий электропередачи, подстанций и тепловых сетей, связанных общностью режима и непрерывностью процесса производства и распределения электрической и тепловой энергии.

Потребность объединять работу нескольких электростанций в общую сеть стала проявляться уже в 90-х гг. XIX в. Она обусловлена тем, что при совместной работе уменьшается необходимый резерв на каждой станции в отдельности, появляется возможность ремонта оборудования без отключения основных потребителей, создаются условия для выравнивания графика нагрузки базисных станций в целях более эффективного использования энергетических ресурсов. Первое известное объединение двух трехфазных электростанций было осуществлено в 1892 г. в Швейцарии.

Русские электротехники сумели быстро оценить достоинства трехфазной системы. Уже в январе 1892 г. на 4-й Петербургской электротехнической выставке демонстрировались две трехфазные машины системы Доливо-Добровольского мощностью по 15 кВт. В России первым предприятием с трехфазным электроснабжением был Новороссийский элеватор. Он представлял собой огромное сооружение, и задача распределения энергии по его этажам и различным зданиям могла быть решена наилучшим образом только с помощью электричества. Элеватор был электрифицирован в 1893 г. Все машины по разработанным за границей проектам изготовлялись в собственных мастерских элеватора. На электростанции, построенной рядом с элеватором, были установлены четыре синхронных генератора мощностью 300 кВт каждый. В то время это была самая мощная в мире трехфазная электростанция. В помещениях элеватора работали трехфазные двигатели мощностью 3,5-15,0 кВт, которые приводили в действие различные машины и механизмы. Часть энергии использовалась для освещения.

Первая в России электропередача значительной протяженности была сооружена на Павловском прииске Ленского золотопромышленного района в Сибири. На электростанции, построенной в 1896 г. на р. Ныгра, были установлены трехфазный генератор (98 кВт, 600 об/мин, 140 В) и трансформатор соответствующей мощности, повышающий напряжение до 10 кВ. Электроэнергия передавалась на прииск, удаленный от станции на расстояние 21 км. На прииске для привода водоотливных устройств использовались трехфазные асинхронные двигатели мощностью 6,5-25,0 л. с. (напряжение 260 В). С 1897 г. началась электрификация крупных городов: Москвы, Петербурга, Самары, Киева, Риги, Харькова и др.

Интересно отметить, что во время бурного развития трехфазных электропередач высокого напряжения (до 150 кВ) М.О. Доливо- Добровольский на основе технико-экономических расчетов пришел к выводу о том, что при передаче энергии на несколько сотен километров при напряжении свыше 200 кВ целесообразно генерирование и распределение энергии осуществлять переменным током, а передачу - постоянным током высокого напряжения. Линия постоянного тока в начале и в конце должна подсоединяться к преобразовательным подстанциям, на которых устанавливаются ртутные выпрямители. К такому выводу он пришел, даже не зная о такой проблеме для мощных линий передач переменного тока, как устойчивость.

В наши дни его предсказание оправдалось, и во многих странах успешно действуют линии электропередачи постоянного тока сверхвысокого напряжения (подробнее см. в 11.6). На рис. 1.1 и 1.2 показана динамика роста рабочего напряжения воздушных линий передач переменного и постоянного тока.

Рис. 1.1.

(рекордных) классов напряжения

Рис. 1.2.

(рекордных) кчассов напряжения

Дальнейшее развитие электроэнергетики в нашей стране проходило в несколько этапов:

  • соединение электростанций на параллельную работу и образование первых энергосистем;
  • образование территориальных объединений энергосистем (ОЭС);
  • создание Единой энергетической системы (ЕЭС);
  • функционирование ЕЭС России после образования независимых государств на территории бывшего СССР.

Основа создания энергетических систем в нашей стране была заложена Государственным планом электрификации России (ГОЭЛРО), утвержденным в 1920 г. Этот план предусматривал централизацию электроснабжения путем строительства крупных электростанций и электрических сетей с последовательным объединением их в энергетические системы. Планом ГОЭЛРО предусматривалось также всемерное развитие отечественной электротехнической промышленности, освобождение ее от засилья иностранного капитала, удельный вес которого составлял в ней в начале 20-х гг. 70 %. Для решения всех вопросов электротехники и подготовки высококвалифицированных специалистов в октябре 1921 г. был создан Государственный экспериментальный электротехнический институт, переименованный впоследствии во Всесоюзный электротехнический институт (ВЭИ).

Под руководством ведущих членов комиссии ГОЭЛРО (руководитель Г.М. Кржижановский) были спроектированы и построены ряд электростанций и линий электропередач: Шатурская ГРЭС (мощность 48 МВт, ввод в эксплуатацию в 1925 г.), Волховская ГЭС (66 МВт, 1926 г.), Нижнесвирская ГЭС (90 МВт, 1933 г.), Днепровская ГЭС (580 МВт, 1932 г.). Днепровская ГЭС была в то время самой крупной в Европе.

Первые энергосистемы - Московская и Петроградская - были созданы в 1921 г. В 1922 г. в Московской энергосистеме вошла в строй первая линия электропередачи напряжением 110 кВ Каширская ГРЭС - Москва длиной 120 км, а в 1933 г. была пущена ЛЭП напряжением 220 кВ Нижнесвирская ГЭС - Ленинград. (Первая линия 220 кВ во Франции была построена всего на полгода раньше). Были образованы новые энергосистемы: Донбасская (1926 г.), Ивановская (1928 г.), Ростовская (1929 г.) и др.

За 15-летний срок план ГОЭЛРО был значительно перевыполнен. Установленная мощность электростанций страны в 1935 г. составила 6,9 млн кВт, годовая выработка электроэнергии достигла 26,8 млрд кВт-ч. По производству электроэнергии Советский Союз занял второе место в Европе и третье в мире.

Процесс объединения энергосистем начался еще в первой половине 30-х гг. с создания сетей 110 кВ энергосистем в районах Центра и Донбасса. В 1940 г. для руководства параллельной работой Верхневолжских энергосистем (Горьковской, Ивановской и Ярославской) была создана объединенная диспетчерская служба. В связи с намечавшимся объединением энергосистем Юга в 1938 г. было создано Бюро Южной энергосистемы, которое затем было преобразовано в Оперативнодиспетчерское управление Юга; в 1940 г. была введена в эксплуатацию первая межсистемная связь напряжением 220 кВ Днепр-Донбасс.

Мощность всех электростанций страны в 1940 г. достигла 11,2 млн кВт, выработка электроэнергии составила 48,3 млрд кВт-ч.

Интенсивное плановое развитие электроэнергетики было прервано Великой Отечественной войной. Перебазирование промышленности западных районов на Урал и в восточные районы страны потребовало форсированного развития энергетики Урала, Казахстана, Центральной Сибири, Средней Азии, Поволжья, Закавказья и Дальнего Востока. Особенно большое развитие получила электроэнергетика Урала, где выработка электроэнергии с 1940 по 1945 гг. увеличилась в 2,5 раза.

В ходе войны электроэнергетике был нанесен громадный ущерб: взорваны, сожжены или частично разрушены 61 крупная электростанция и большое число мелких общей мощностью 5 млн кВт, т. е. почти половина установленных к тому времени мощностей. Разрушено 10 тыс. км магистральных линий электропередачи высокого напряжения, большое количество подстанций.

Восстановление энергетического хозяйства началось уже с конца 1941 г. В 1942 г. восстановительные работы велись в центральных районах европейской части СССР, а к 1945 г. эти работы распространились на всю освобожденную территорию страны.

В 1946 г. суммарная мощность электростанций СССР достигла довоенного уровня: в 1947 г. страна по производству электроэнергии вышла на первое место в Европе и на второе в мире.

В 1954 г. в г. Обнинске была введена в эксплуатацию первая в мире атомная электростанция мощностью 5 МВт.

В 1955 г. суммарная мощность электростанций достигла 37,2 млн кВт, выработка электроэнергии составила 170,2 млрд кВт-ч.

Переход к следующему, качественно новому этапу развития электроэнергетики был связан с вводом в эксплуатацию мощных Волжских ГЭС и дальних линий электропередачи 400-500 кВ. В 1956 г. была введена в работу первая электропередача 400 кВ Куйбышев (ныне Самара) - Москва.

ЛЭП 400 кВ Куйбышев-Москва объединила энергосистемы Средней Волги, линия Куйбышев-Урал - с энергосистемами Прсдура- лья и Урала. Этим было положено начало объединению энергосистем различных регионов и созданию ЕЭС европейской части СССР.

В течение 60-х гг. завершилось формирование ЕЭС европейской части СССР, и в 1970 г. начался следующий этап развития электроэнергетики страны - формирование ЕЭС СССР в составе: ОЭС Центра, Урала, Средней Волги, Северо-Запада, Юга, Северного Кавказа и Закавказья, включавших 63 энергосистемы; три территориальные ОЭС - Казахстана, Сибири и Средней Азии работали раздельно; ОЭС Дальнего Востока находилась в стадии формирования.

В 1972 г. в состав ЕЭС СССР вошла ОЭС Казахстана. В 1973 г. энергосистема Болгарии присоединена на параллельную работу с ЕЭС СССР по межгосударственной связи 400 кВ Молдавская ГРЭС- Вулканешты-Добруджа.

В 1978 г. с завершением строительства транзитной связи 500 кВ Сибирь-Казахстан-Урал присоединилась на параллельную работу ОЭС Сибири. В том же году было закончено строительство межгосударственной связи 750 кВ Западная Украина - Альбертирша (Венгрия), и с 1979 г. началась параллельная работа ЕЭС СССР и ОЭС стран-членов Совета экономической взаимопомощи (СЭВ).

От сетей ЕЭС СССР осуществлялся экспорт электроэнергии в МНР, Финляндию, Турцию и Афганистан; через преобразовательную подстанцию постоянного тока в районе Выборга ЕЭС СССР соединилась с энергообъединением Скандинавских стран NORDEL.

Динамика структуры генерирующих мощностей в 70-х и 80-х гг. характеризуется: нарастающим вводом мощностей на АЭС в западной части страны и дальнейшим вводом мощностей на высокоэффективных ГЭС преимущественно в восточной части страны; началом работ по первому этапу создания Экибасгузского энергетического комплекса; общим ростом концентрации генерирующих мощностей и увеличением единичной мощности агрегатов. Мощность наиболее крупных электростанций России в настоящее время составляет: ТЭС - 4800 МВт (Сургутская ГРЭС-2), АЭС - 4000 МВт (Балаковская, Ленинградская, Курская), ГЭС - 6400 МВт (Саяно-Шушенская).

Технический прогресс в развитии системообразующих сетей характеризовался последовательным переходом к более высоким ступеням напряжения. Освоение напряжения 750 кВ началось с ввода в эксплуатацию в 1967 г. опытно-промышленной электропередачи Конаковская ГРЭС - Москва. В течение 1971-1975 гг. в ОЭС Юга была сооружена широтная магистраль 750 кВ Донбасс - Днепр - Винница - Западная Украина. В 1975 г. была сооружена межсистсмная связь 750 кВ Ленинград-Конаково, позволившая передать в ОЭС Центра избыточную мощность ОЭС Северо-Запада. Для создания мощных связей с восточной частью ЕЭС сооружалась магистральная линия электропередачи 1150 кВ Сибирь-Казахсган-Урал. Было начато также строительство электропередачи постоянного тока напряжением 1500 кВ Экиба- стуз-Цснтр.

В табл. 1.1 приведены данные по установленной мощности электростанций и протяженности электрических сетей 220-1150 кВ ЕЭС СССР за период 1960-1991 гг.

В послевоенные годы электрификация стала основой научно- технического прогресса страны. На ее базе происходило непрерывное совершенствование технологий в промышленности, транспорте, связи, сельском хозяйстве и строительстве, осуществлялась механизация и автоматизация производственных процессов. Рост производства электроэнергии в эти годы опережал рост произведенного национального дохода в 1,6 раза.

Таблица 1.1

Рост установленной мощности электростанций и протяженности электрических сетей 220-1150 кВ ЕЭС СССР

Показатель

Установленная мощность

электростанций, млн кВт

Высшее напряжение, кВ

Протяженность электри-

ческих сетей, тыс. км:

Управление электроэнергетикой страны до 1991 г. происходило в условиях монополии государственной собственности на все предприятия отрасли. Все электростанции и ЛЭП принадлежали государству и строились за счет средств государственного бюджета. Строительство объектов электроэнергетики осуществлялось по критерию минимальных народно-хозяйственных затрат. Такой подход к развитию отрасли при полном государственном регулировании минимизировал нспроизводительные затраты. Выбор места размещения новых электростанций и их мощность определялись наличием ТЭР в данном районе и экономической целесообразностью их использования.

Каждая крупная электростанция строилась так, чтобы обеспечивать электроэнергией территорию, охватывающую несколько смежных областей или республик. Для таких электростанций использовался термин «государственная районная электрическая станция» - ГРЭС, т. е. электростанция, построенная на государственные средства, принадлежащая государству и обеспечивающая электроэнергией большой район радиусом до 500-600 км и более. Как правило, эти крупные ГРЭС конденсационного типа или АЭС рассчитаны на производство большого количества электроэнергии. Такие электростанции явились основными производителями электроэнергии в составе ЕЭС СССР.

Тепловая энергия производилась на ГРЭС в небольшом количестве для собственных нужд электростанции и для близлежащих населенных пунктов.

Теплоэлектроцентрали (ТЭЦ), вырабатывающие электрическую и тепловую энергию по комбинированному циклу, размещались в местах сосредоточения больших тепловых нагрузок, например крупных промышленных предприятий или городских районов. В каждом крупном городе была построена одна или несколько ТЭЦ. Они обеспечивали население и промышленность, в первую очередь, тепловой энергией, а попутно и дешевой электроэнергией, вырабатываемой на тепловой нагрузке.

Эффективность работы электроэнергетики обеспечивалась централизованным управлением режимами работы электростанций и электрических сетей, планированием и контролем их техникоэкономических показателей. Директивная система позволяла легко реализовать перераспределение экономического эффекта от деятельности различных предприятий электроэнергетики, исходя из интересов народного хозяйства страны, а экономические противоречия между производителями и потребителями разрешались самим же государством. Непротиворечивость интересов развития и функционирования отдельных предприятий электроэнергетики в этот период обеспечивалась единой нормативно-правовой основой, которая формировалась центральными органами государственного управления (Госпланом СССР и Минэнерго СССР) .

Централизованное распределение капитальных вложений в развитие и функционирование объектов электроэнергетики не было непосредственно связано с результатами хозяйственной деятельности отдельных предприятий, а непроизводительные расходы убыточных предприятий покрывались перераспределением доходов внутри самой отрасли за счет прибыльных предприятий. Директивное управление было направлено в основном на выполнение плановых технико-экономических показателей и ограничивало инициативу предприятий по улучшению своей деятельности, поскольку экономический эффект от успешной деятельности мог быть просто перераспределен в пользу другого, убыточного предприятия. Эти издержки централизации отчётливо проявились при переходе страны к рыночной экономике и стали побудительной причиной радикальной реформы электроэнергетической отрасли.

Электроэнергетика -- базовая отрасль, развитие которой является непременным условием развития экономики и других сфер жизни общества. В мире производится около 13000 млрд. кВт/ч, из которых только на США приходится до 25%. Свыше 60% электроэнергии в мире производится на тепловых электростанциях (в США, России и Китае -- 70-80%), примерно 20% -- на ГЭС, 17% -- на атомных станциях (во Франции и Бельгии -- 60%, Швеции и Швейцарии -- 40-45%).

Наиболее обеспеченными электроэнергией в расчете на душу населения являются Норвегия (28 тыс. кВт/ч в год), Канада (19 тыс.), Швеция (17 тыс.).

Электроэнергетика вместе с топливными отраслями, включающими разведку, добычу, переработку и транспортировку источников энергии, а также и самой электрической энергии, образует важнейший для экономики любой страны топливно-энергетический комплекс (ТЭК). Около 40% всех первичных энергоресурсов мира расходуется на выработку электроэнергии. В ряде стран основная часть топливно-энергетического комплекса принадлежит государству (Франция, Италия и др.), но во многих странах основную роль в ТЭК играет смешанный капитал.

Электроэнергетика занимается производством электроэнергии, ее транспортировкой и распределением. Особенность электроэнергетики состоит в том, что ее продукция не может накапливаться для последующего использования: производство электроэнергии в каждый момент времени должно соответствовать размерам потребления с учетом нужд самих электростанций и потерь в сетях. Поэтому связи в электроэнергетике обладают постоянством, непрерывностью и осуществляются мгновенно.

Электроэнергетика оказывает большое воздействие на территориальную организацию хозяйства: позволяет осваивать ТЭР удаленных восточных и северных районов; развитие магистральных высоковольтных линий способствует более свободному размещению промышленных предприятий; крупные ГЭС притягивают к себе энергоемкие производства; в восточных районах электроэнергетика является отраслью специализации и служит основой формирования территориально-производственных комплексов.

Считается, что для нормального развития экономики рост производства электроэнергии должен обгонять рост производства во всех других отраслях. Большую часть выработанной электроэнергии потребляет промышленность. По производству электроэнергии (1015,3 млрд. кВт.-ч в 2007 г.) Россия занимает четвертое место после США, Японии и Китая.

По масштабам производства электроэнергии выделяются Центральный экономический район (17,8% общероссийского производства), Восточная Сибирь (14,7%), Урал (15,3%) и Западная Сибирь (14,3%). Среди субъектов РФ по выработке электроэнергии лидируют Москва и Московская область, Ханты-Мансийский автономный округ, Иркутская область, Красноярский край, Свердловская область. Причем электроэнергетика Центра и Урала базируется на привозном топливе, а сибирские регионы работают на местных энергоресурсах и передают электроэнергию в другие районы.

Электроэнергетика современной России главным образом представлена тепловыми электростанциями, работающими на природном газе, угле и мазуте, в последние годы в топливном балансе электростанций возрастает доля природного газа. Около 1/5 отечественной электроэнергии вырабатывают гидроэлектростанции и 15% -- АЭС.

Тепловые электростанции, работающие на низкокачественном угле, как правило, тяготеют к местам его добычи. Для электростанций на мазуте оптимально их размещение рядом с нефтеперерабатывающими заводами. Электростанции на газе ввиду сравнительно низкой величины затрат на его транспортировку преимущественно тяготеют к потребителю. Причем в первую очередь переводят на газ электростанции крупных и крупнейших городов, так как он является более чистым в экологическом отношении топливом, чем уголь и мазут. ТЭЦ (производящие и тепло, и электроэнергию) тяготеют к потребителю независимо от топлива, на котором они работают (теплоноситель при передаче на расстояние быстро остывает).

Самыми крупными тепловыми электростанциями мощностью более 3,5 млн. кВт каждая являются Сургутская (в Ханты-Мансийском автономном округе), Рефтинская (в Свердловской области) и Костромская ГРЭС. Мощность более 2 млн. кВт имеют Киришская (около Санкт-Петербурга), Рязанская (Центральный район), Новочеркасская и Ставропольская (Северный Кавказ), Заинская (Поволжье), Рефтинская и Троицкая (Урал), Нижневартовская и Березовская в Сибири.

Геотермические электростанции, использующие глубинное тепло Земли, привязаны к источнику энергии. В России на Камчатке действуют Паужетская и Мутновская ГТЭС.

Гидроэлектростанции -- весьма эффективные источники электроэнергии. Они используют возобновимые ресурсы, обладают простотой управления и очень высоким коэффициентом полезного действия (более 80%). Поэтому стоимость производимой ими электроэнергии в 5-6 раз ниже, чем на ТЭС.

Гидроэлектростанции (ГЭС) экономичнее всего строить на горных реках с большим перепадом высот, тогда как на равнинных реках для поддержания постоянного напора воды и снижения зависимости от сезонных колебаний объемов воды требуется создание больших водохранилищ. Для более полного использования гидроэнергетического потенциала сооружаются каскады ГЭС. В России созданы гидроэнергетические каскады на Волге и Каме, Ангаре и Енисее. Общая мощность Волжско-Камского каскада -- 11,5 млн. кВт. И он включает 11 электростанций. Самыми мощными являются Волжская (2,5 млн. кВт) и Волгоградская (2,3 млн. кВт). Действуют также Саратовская, Чебоксарская, Воткинская, Иваньковская, Угличская и др.

Еще более мощный (22 млн. кВт) -- Ангаро-Енисейский каскад, включающий самые крупные в стране ГЭС: Саянскую (6,4 млн. кВт), Красноярскую (6 млн. кВт), Братскую (4,6 млн. кВт), Усть-Илимскую (4,3 млн. кВт).

Приливные электростанции используют энергию высоких приливов и отливов в отсеченном от моря заливе. В России действует опытная Кислогубская ПЭС у северного побережья Кольского полуострова.

Атомные электростанции (АЭС) используют высокотранспортабельное топливо. Учитывая, что 1 кг урана заменяет 2,5 тыс. т угля, АЭС целесообразнее размещать вблизи потребителя, в первую очередь в районах, лишенных других видов топлива. Первая в мире АЭС была построена в 1954 г. в г. Обнинске (Калужская обл.). Сейчас в России действует 8 атомных электростанций, из которых самыми мощными являются Курская и Балаковская (Саратовская обл.) по 4 млн. кВт каждая. В западных районах страны действуют также Кольская, Ленинградская, Смоленская, Тверская, Нововоронежская, Ростовская, Белоярская. На Чукотке -- Билибинская АТЭЦ.

Важнейшая тенденция развития электроэнергетики -- объединение электростанций в энергосистемах, которые осуществляют производство, передачу и распределение электроэнергии между потребителями. Они представляют собой территориальное сочетание электростанций разных типов, работающих на общую нагрузку. Объединение электростанций в энергосистемы способствует возможности выбирать наиболее экономичный режим нагрузки для разных типов электростанций; в условиях большой протяженности государства, существования поясного времени и несовпадения пиковых нагрузок в отдельных частях таких энергосистем можно маневрировать производством электроэнергии во времени и пространстве и перебрасывать ее по мере надобности во встречных направлениях.

В настоящее время функционирует Единая энергетическая система (ЕЭС) России. В ее состав входят многочисленные электростанции европейской части и Сибири, которые работают параллельно, в едином режиме, сосредоточивая более 4/5 суммарной мощности электростанций страны. В регионах России восточнее Байкала действуют небольшие изолированные энергосистемы.

Энергетической стратегией России на ближайшее десятилетие предусмотрено дальнейшее развитие электрификации за счет экономически и экологически обоснованного использования ТЭС, АЭС, ГЭС и нетрадиционных возобновляемых видов энергии, повышение безопасности и надежности действующих энергоблоков АЭС.

Промышленность любой страны состоит из большого количества разнообразных отраслей, таких как машиностроение или электроэнергетика. Это те направления, в которых развивается конкретная страна, и у разных государств могут быть различные акценты в зависимости от многих факторов, таких как природные ресурсы, технологическое развитие и так далее. В данной статье речь пойдет об одной очень важной и активно развивающейся на сегодняшний день отрасли промышленности - об электроэнергетике. Электроэнергетика - это отрасль, которая развивалась в течение многих лет постоянно, однако именно в последние годы она начала активно двигаться вперед, подталкивая человечество к использованию более экологичных источников энергии.

Что это такое?

Итак, в первую очередь необходимо разобраться, что вообще представляет собой данная отрасль. Электроэнергетика - это подразделение энергетики, которое отвечает за производство, распределение, передачу и продажу именно электрической энергии. Среди других отраслей данной сферы именно электроэнергетика является самой популярной и распространенной сразу по целому ряду причин. Например, из-за легкости ее дистрибуции, возможности передачи ее на огромные расстояния за кратчайшие промежутки времени, а также из-за ее универсальности - электрическую энергию можно без проблем при необходимости трансформировать в другие такие как тепловая, световая, химическая и так далее. Таким образом, именно развитию данной отрасли огромное внимание уделяют правительства мировых держав. Электроэнергетика - это отрасль промышленности, за которой будущее. Именно так считают многие люди, и именно поэтому вам необходимо более детально ознакомиться с ней с помощью данной статьи.

Прогресс производства электроэнергии

Чтобы вы могли полностью понять, насколько важной является для мира данная отрасль, необходимо взглянуть на то, как происходило развитие электроэнергетики на протяжении всей истории ее существования. Сразу же стоит отметить, что производство электроэнергии обозначается в миллиардах киловатт в час. В 1890 году, когда электроэнергетика только начинала развиваться, производилось всего девять млрд кВт/ч. Большой скачок произошел к 1950 году, когда производилось уже более чем в сто раз больше электроэнергии. С того момента развитие шло гигантскими шагами - каждое десятилетие добавлялось сразу по несколько тысяч миллиардов кВт/ч. В результате к 2013 году мировыми державами производилось в сумме 23127 млрд кВт/ч - невероятный показатель, который продолжает расти с каждым годом. На сегодняшний день больше всего электроэнергии дают Китай и Соединенные Штаты Америки - именно эти две страны имеют наиболее развитые отрасли электроэнергетики. На долю Китая приходится 23 процента вырабатываемой во всем мире электроэнергии, а на долю США - 18 процентов. Следом за ними идут Япония, Россия и Индия - каждая из этих стран имеет как минимум в четыре раза меньшую долю в мировом производстве электроэнергии. Что ж, теперь вам также известна и общая география электроэнергетики - пришло время перейти к конкретным видам этой отрасли промышленности.

Тепловая электроэнергетика

Вы уже знаете, что электроэнергетика - это отрасль энергетики, а сама энергетика, в свою очередь, является отраслью промышленности в целом. Однако разветвление не заканчивается на этом - электроэнергетики имеется несколько видов, некоторые из них очень распространенные и используются повсеместно, другие не так популярны. Существуют и альтернативные области электроэнергетики, где используются нетрадиционные методы, позволяющие добиваться масштабного производства электроэнергии без вреда окружающей среде, а также с нейтрализацией всех негативных особенностей традиционных методов. Но обо всем по порядку.

В первую очередь необходимо рассказать о тепловой электроэнергетике, так как она является самой распространенной и известной во всем мире. Как получается электроэнергия данным способом? Легко можно догадаться, что в данном случае происходит преобразование тепловой энергии в электрическую, а тепловая получается путем сжигания различных видов топлива. Теплоэлектроцентрали можно найти практически в каждой стране - это самый простой и удобный процесс получения больших объемов энергии при малых затратах. Однако именно этот процесс и является одним из самых вредных для окружающей среды. Во-первых, для получения электроэнергии используется природное топливо, которое когда-нибудь гарантированно закончится. Во-вторых, продукты горения выбрасываются в атмосферу, отравляя ее. Именно поэтому и существуют альтернативные методы получения электроэнергии. Однако это еще далеко не все традиционные виды электроэнергетики - есть и другие, и дальше мы сконцентрируемся именно на них.

Ядерная электроэнергетика

Как и в предыдущем случае, при рассмотрении ядерной электроэнергетики можно многое почерпнуть уже из названия. Выработка электроэнергии в данном случае производится на атомных реакторах, где происходит расщепление атомов и деление их ядер - в результате этих действий происходит большой выброс энергии, которая затем и трансформируется в электрическую. Вряд ли кому-то еще неизвестно, что это самая небезопасная электроэнергетика. Промышленность далеко не каждой страны имеет свою долю в мировом производстве ядерной электроэнергии. Любая утечка из такого реактора может привести к катастрофическим последствиям - достаточно вспомнить Чернобыль, а также происшествия в Японии. Однако в последнее время безопасности уделяется все больше внимания, поэтому атомные электростанции строятся и дальше.

Гидроэнергетика

Еще одним популярным способом производства электроэнергии является получение ее из воды. Этот процесс происходит на гидроэлектростанциях, он не требует ни опасных процессов деления ядра атома, ни вредных для окружающей среды сжиганий топлива, но имеет и свои минусы. Во-первых, это нарушение естественного течения рек - на них строятся дамбы, за счет которых создается необходимое течение воды в турбины, благодаря чему и получается энергия. Зачастую из-за строительства дамб осушаются и гибнут реки, озера и другие природные водохранилища, поэтому нельзя сказать, что это идеальный вариант для данной отрасли энергетики. Соответственно, многие предприятия электроэнергетики обращаются не к традиционным, а к альтернативным видам получения электроэнергии.

Альтернативная электроэнергетика

Альтернативная электроэнергетика - это собрание видов электроэнергетики, отличных от традиционных в основном тем, что они не требуют нанесения того или иного вида вреда окружающей среде, а также не подвергают никого опасности. Речь идет о водородной, приливной, волновой и многих других разновидностях. Самым распространенными из них являются ветро- и гелиоэнергетика. Именно на них делается акцент - многие считают, что именно за ними будущее данной отрасли. В чем суть этих видов?

Ветроэнергетика - это получение электроэнергии из ветра. В полях строятся ветряные мельницы, которые работают очень эффективно и позволяют обеспечивать энергией ненамного хуже, чем описанные ранее методы, но при этом для действия ветряков нужен только лишь ветер. Естественно, недостатком данного метода является то, что ветер - это природная стихия, которую невозможно себе подчинить, однако ученые работают над улучшением функциональности ветряных мельниц современности. Что касается гелиоэнергетики, то здесь электроэнергия получается из солнечных лучей. Как и в случае с предыдущим видом, здесь также необходимо работать над увеличением аккумулирующей мощности, так как солнце светит далеко не всегда - и даже если погода безоблачная, в любом случае в определенный момент наступает ночь, когда солнечные панели не способны производить электроэнергию.

Передача электроэнергии

Что ж, теперь вы знаете все основные виды получения электроэнергии, однако, как вы уже могли понять из определения термина электроэнергетики, получением все не ограничивается. Энергию необходимо передавать и распределять. Так, передается по линиям электропередач. Это металлические проводники, которые создают одну большую электрическую сеть во всем мире. Ранее чаще всего использовались воздушные линии - именно их вы можете видеть вдоль дорог, перекинутые от одного столба к другому. Однако в последнее время большую популярность обретают кабельные линии, которые прокладываются под землей.

История развития электроэнергетики России

Электроэнергетика России начала развиваться тогда же, когда и мировая - в 1891 году, когда впервые была удачно осуществлена передача электрической мощности на практически двести километров. В реалиях дореволюционной России электроэнергетика была невероятно слабо развита - годовая выработка электричества на такую огромную страну составляла всего 1,9 млрд кВт/ч. Когда же состоялась революция, Владимир Ильич Ленин предложил реализация которого была начата немедленно. Уже к 1931 году задуманный план был выполнен, однако скорость развития оказалась настолько впечатляющей, что к 1935 году план был перевыполнен в три раза. Благодаря этой реформе уже к 1940 году годовая выработка электроэнергии в России составила 50 млрд кВт/ч, что в двадцать пять раз больше, чем до революции. К сожалению, резкий прогресс был прерван Второй мировой войной, однако после ее завершения работы восстановились, и к 1950 году Советский Союз вырабатывал 90 млрд кВт/ч, что составляло около десяти процентов всеобщей выработки электроэнергии по всему миру. Уже к середине шестидесятых годов Советский Союз вышел на второе место в мире по производству электроэнергии и уступал только Соединенным Штатам. Ситуация оставалась на таком же высоком уровне вплоть до распада СССР, когда электроэнергетика оказалась далеко не единственной отраслью промышленности, которая сильно пострадала из-за этого события. В 2003 году был подписан новый ФЗ об электроэнергетике, в рамках которого в ближайшие десятилетия должно происходить стремительное развитие этой отрасли в России. И страна определенно движется в этом направлении. Однако одно дело - подписать ФЗ об электроэнергетике, и совершенно другое - его реализовать. Именно об этом и пойдет речь далее. Вы узнаете о том, какие на сегодняшний день существуют проблемы электроэнергетики России, а также какие будут выбираться пути для их решения.

Избыток электрогенерирующих мощностей

Электроэнергетика России находится уже в гораздо более хорошем состоянии, чем десять лет назад, так что можно смело сказать, что прогресс идет. Однако на недавно проведенном энергетическом форуме были выявлены основные проблемы этой отрасли в стране. И первая из них - избыток электрогенерирующих мощностей, который был вызван массовой постройкой электростанций низкой мощности в СССР вместо строительства малого количества электростанций высокой мощности. Все эти станции все равно нужно обслуживать, поэтому выхода из ситуации два. Первый - это вывод мощностей из эксплуатации. Этот вариант был бы идеальным, если бы не огромные стоимости такого проекта. Поэтому Россия, скорее всего, будет двигаться в сторону второго выхода, а именно увеличения объема потребления.

Импортозамещение

После введения западных станций промышленность России очень остро ощутила свою зависимость от заграничных поставок - это сильно затронуло и электроэнергетику, где практически ни в одной из современных сфер деятельности полный процесс производства тех или иных генераторов не проходил исключительно на территории РФ. Соответственно, правительство планирует наращивать производственные мощности в нужных направлениях, контролировать их локализацию, а также пытаться максимально избавиться от зависимости от импорта.

Чистый воздух

Проблема заключается в том, что современные российский компании, работающие в сфере электроэнергетики, очень сильно загрязняют воздух. Однако Министерство экологии РФ ужесточило законодательство и стало чаще собирать штрафы за нарушение установленных норм. К сожалению, компании, страдающие от этого, не планируют пытаться оптимизировать свое производство - они бросают все силы на то, чтобы задавить «зеленых» количеством, и требуют смягчения законодательства.

Миллиарды долга

На сегодняшний день суммарный долг пользователей электроэнергии по всей России составляет около 460 миллиардов российских рублей. Естественно, если бы в распоряжении страны были все те деньги, которые ей задолжали, то она могла бы значительно быстрее развивать электроэнергетику. Поэтому правительство планирует ужесточить наказания за просрочки в оплате счетов за электричество, а также будет призывать тех, кто не хочет платить по счетам в будущем, устанавливать собственные солнечные панели и снабжать себя энергией самостоятельно.

Регулируемый рынок

Самая главная проблема отечественной электроэнергетики - это полная регулируемость рынка. В европейских странах регулирование рынка энергетики практически полностью отсутствует, там имеется самая настоящая конкуренция, поэтому отрасль развивается огромными темпами. Все эти правила и регуляции очень сильно тормозят развитие, и в результате РФ уже начала закупки электроэнергии из Финляндии, где рынок практически не регулируется. Единственное решение этой проблемы - переход к модели свободного рынка и полный отказ от регуляции.

Поделиться