Полная влагоемкость почвы. Влагоемкость почвы Влагоемкость почвы и ее виды

Капиллярная влагоемкость - способность почв и грунтов удерживать в своей толще максимально возможное количество капиллярной воды (без перехода ее в гравитационную форму), выраженное в весовых или объемных процентах или в кубических метрах на 1 га. Капиллярная влагоемкость, таким образом, представляет собой верхний предел водоудерживающей способности почв, обусловленный капиллярно-менисковыми силами. Поэтому и величина капиллярной влагоемкости (капиллярной водоудерживающей способности) в общем соответствует капиллярной скважности почв и грунтов. Поскольку граница и различия между капиллярной и некапиллярной скважностью в почвах условны и представлены рядом переходов, постольку и величина капиллярной влагоемкости несколько условна, она изменяется в зависимости от ряда факторов.
При близком залегании (1,5-2,0 м) уровня грунтовых вод, когда капиллярная кайма смачивает толщу почвы до поверхности, капиллярная влагоемкость почвы характеризуется наибольшими величинами, так как капиллярная влагоемкость в данном случае обусловлена суммарной всасывающей деятельностью менисков тонких и крупных пор и капилляров. В этом случае капиллярная влагоемкость соответствует максимально возможной величине содержания в почве капиллярно-подпертой воды. Наиболее точно величина капиллярной влагоемкости определяется в этом случае в поле путем установления послойной влажности от поверхности почвы до уровня грунтовых вод. Для 1,5-метрового слоя среднесуглинистых почв это соответствует 30-40 об.%, или около 4500- 6000 м3/гa.
В случае глубокого залегания уровня грунтовых вод капиллярная влагоемкость почвы связана только с работой сравнительно тонких пор и капилляров. В этом случае ее величина соответствует максимально возможному объему удержанной в почве капиллярно-подвешенной воды. Величина влагоемкости в случае капиллярно-подвешенной воды колеблется в зависимости от структуры и механического состава почв в пределах 20-35 об.%, что составляет для 1-метрового слоя 2000-3500 м3/га, а для 1,5-метрового - 3000-5250 м3/га.
Очень часто влагоемкость в отношении капиллярно-подвешенной воды называют наименьшей влагоемкостью (HB). Этот термин, введенный П.С. Коссовичем, основан на идее о том, что в почвах глубокого уровня грунтовых вод нет подпирающего влияния восходящей капиллярной каймы и пористая почвенная система удерживает то наименьшее количество влаги, которая остается после свободного оттока гравитационной воды.
Капиллярная влагоемкость может быть определена на монолите в лаборатории или в полевых условиях методом предварительного длительного увлажнения почвы таким объемом воды, который заведомо превышает водоудерживающую способность почвы. Переувлажненная почва оставляется на известное время защищенной от испарения. Гравитационной воде в течение нескольких дней предоставляется возможность свободно стечь из почвенных горизонтов. Затем определяется количество влаги, удержанной в почве. Эта величина и будет соответствовать капиллярной (подвешенной) влагоемкости (наименьшей влагоемкости) почвы. Капиллярная влагоемкость, определенная для полевых конкретных условий, называется полевой влагоемкостью (полевой предельной влагоемкостью, полевой водоудерживающей способностью) почвы.
Почва в естественных условиях залегания не может удержать капиллярной воды больше этого «предельного» количества. Возрастание влажности почвы сверх ее водоудерживающей способности вызывает образование гравитационной воды, стекающей в нисходящем направлении или питающей грунтовые воды.
Понятие «предельная полевая влагоемкость» (ППВ) почв является важной гидрологической характеристикой, широко используемой в практике водных мелиораций. Величина предельной полевой влагоемкости зависит от ряда факторов.
Почвы глинистого тяжелого механического состава имеют большую величину полевой влагоемкости - 3500-4000 м3/га для 1-метрового слоя, почвы легкого супесчаного и песчаного механического состава - 2000-2500 м3/га. Почвы с хорошо развитой комковато-зернистой структурой обычно имеют умеренные средние показатели полевой влагоемкости - 2500-3000 м3/га для 1-метрового слоя; бесструктурные почвы характеризуются более высокой величиной полевой влагоемкости. Ниже приводятся величины полевой влагоемкости почв различного механического состава в % от скважности:


Как это ясно из предыдущего изложения, полевая влагоемкость зависит также от положения грунтовых вод, сильно возрастая в случаях близкого уровня грунтовых вод (капиллярная кайма в пределах почвенного профиля) и уменьшаясь при глубоком положении грунтовых вод. Так, при близких (1,5-2 м) грунтовых водах с углублением на каждые 10 см глубже 50 см величина полевой влагоемкости возрастает на 2-3%, а при очень глубоких грунтовых водах - уменьшается на каждые 10 см на ту же величину.
Неоднородность и слоистость почв по профилю, в частности смена механического состава и структурного состояния грунта, способствуют увеличению суммарной величины полевой влагоемкости всего профиля. Это объясняется тем, что вблизи поверхности раздела между соседними слоями вышележащий слой имеет повышенную влажность за счет образования дополнительных менисков и дополнительной водоудерживающей способности (капиллярно-посаженная вода).
Зная величину предельной влагоемкости почвы и сопоставляя с ней величину влажности, зафиксированной в почве на определенный момент, можно оценить состояние и форму воды и определить направление движения влаги. В тех случаях, когда влажность почвы выше величины предельной полевой влагоемкости, имеют место нисходящие токи гравитационной воды. В случае, когда влажность верхних горизонтов меньше полевой влагоемкости, поток капиллярной воды направлен обычно кверху от зеркала грунтовых вод.
Многочисленными исследованиями на опытных станциях и в производственных условиях установлено, что оптимальная влажность почв для развития сельскохозяйственных растений в условиях орошения колеблется в пределах от 100 до 70-75% от полевой влагоемкости. Отсюда следует, что в межполивные периоды относительная влажность почв перед очередным поливом не должна опускаться ниже 70-75% от полевой влагоемкости.
Разность между величиной полевой влагоемкости и фактической влажностью почвы перед очередным поливом называется дефицитом влажности до полевой влагоемкости.
Дефицит влажности до полевой влагоемкости в условиях орошаемого хозяйства должен быть не больше, чем разность между полевой влагоемкостью и величиной 70-75% полевой влагоемкости (на глинах и солончаках 80-85%). Если величина фактической влажности перед поливом ниже 70-75% от полевой влагоемкости (например, 60-50%), то растения будут испытывать депрессию в развитии, что вызовет снижение урожая. Хлопчатник в таких случаях сбрасывает свои плодовые органы (бутоны, завязи, коробочки).
Таким образом, по полевой влагоемкости устанавливаются рациональные нормы поливов. Если при очередном поливе подача воды превысит величину дефицита влаги до полевой влагоемкости, запас воды в почве превысит ее водоудерживаюшую способность, появится свободная гравитационная вода, которая начнет двигаться в нисходящем направлении и пополнять запасы грунтовой воды, повышая их уровень.
В практике орошаемого земледелия иногда применяют поливы без норм, большими количествами воды, в 1,5-2 раза превышающими дефицит до полевой влагоемкости. Такие поливы вызывают интенсивный подъем уровня грунтовых вод, приближение их к дневной поверхности, развитие процессов заболачивания и засоления. Особенно часто это происходит на полях орошаемого риса, где нередко за вегетационный период дается 30-40 тыс. м3/га поливной воды.
Рационально рассчитанная норма полива для незасоленных почв должна представлять собой величину, не превышающую дефицит влажности до полевой влагоемкости, чтобы свести к минимуму фильтрацию избыточной свободной воды в грунтовые воды.
Величина поливной нормы выражается следующим простейшим равенством:

M = П - м + к,


где M - поливная норма; П - полевая влагоемкость; м - фактическая влажность перед поливом; к - потери воды на испарение в момент полива.
Поскольку известно, что при орошении обычных полевых культур влажность почвы не должна перед очередным поливом опускаться ниже 70-75% от полевой влагоемкости, то величина дефицита влажности П - м в большинстве случаев должна быть не выше 25-30% П, что для почв суглинистого механического состава для 1-метровой толщи составит 800-1200 м3/га.
Поясним это на следующем примере. Полевая влагоемкость незасоленной почвы равна 20 вес.%, объемный вес почвы 1,4. Требуется установить оптимальный дефицит До полевой влагоемкости, который и будет представлять оптимальную величину поливной нормы воды для 1-метрового слоя.
Полевая влагоемкость в абсолютном выражении будет составлять П = 2800 м3/га; допустимая влажность до полива - 70% от П, т. е. 1960 м3/га. Тогда дефицит, а следовательно, и поливная норма, составляя разность между полевой влагоемкостью и допустимым запасом воды перед поливом (2800-1960 м3/га), будут равны 840 м3/га.
Зная величину полной влагоемкости и полевой влагоемкости, можно всегда представить себе вероятную величину свободной гравитационной воды, образующейся в почве в случае естественного или искусственного снижения уровня грунтовых вод. Эта величина называется водоотдачей грунта.
Водоотдача грунта - количество свободной гравитационной воды, образующейся в грунте при снижении уровня грунтовых вод, выраженное в процентах от скважности (полной влагоемкости), от объема грунта или в виде коэффициента. Коэффициент водоотдачи сильно колеблется в зависимости от структуры, механического состава и скважности почв и грунтов. Об этом можно судить по данным табл. 6.


Зная величину коэффициента водоотдачи, можно предвидеть вероятный подъем уровня грунтовых вод при поступлении в грунт свободной гравитационной воды. Вероятный подъем уровня грунтовых вод h (в см) при поступлении в них гравитационной воды равен слою просочившейся воды b (в см), деленному на коэффициент водоотдачи Q:

Из величин коэффициента водоотдачи видно, что при поступлении гравитационной воды интенсивность подъема уровня грунтовых вод возрастает тем больше, чем тяжелее механический состав грунта. Так, в глинах каждый миллиметр просочившейся и поступившей в грунтовые воды гравитационной, воды может повысить уровень грунтовой воды на 3-10 см, в суглинках - на 2-3 см, в песках значительно меньше - на 0,3-0,5 см.
Зная дефицит влажности до полевой влагоемкости, можно установить то количество свободной гравитационной воды, которое появляется в толще горизонтов почвы при ее увлажнении сверх водоудерживающей способности. Количество гравитационной воды, образующейся при этом в толще грунта, представляет собой разность между объемом поданной воды и объемом дефицита до полевой влагоемкости, что может быть показано следующим выражением:

В = М - (П - м),


где В - гравитационная вода; M - вода, поступившая на почву сверху; П - полевая влагоемкость; м - запас воды в почве.
Таким образом, капиллярная влагоемкость и ее разновидность для почв, находящихся в культуре, так называемая полевая (предельная) влагоемкость, являются важнейшими почвенно-гидрологическими характеристиками, на знании которых и правильном применении должно базироваться рациональное регулирование водного режима почв и осуществление водных мелиораций.

Влагоемкость (влагоудержание) - свойство почвы поглощать и удерживать то максимальное количество воды, которое в данное время соответствует воздействию на нее сил и условиям внешней среды. Это свойство зависит от состояния увлажненности, пористости, температуры почвы, концентрации и состава почвенных растворов, степени окультуренности, а также от других факторов и условий почвообразования. Чем выше температура почвы и воздуха, тем меньше влагоемкость, за исключением почв, обогащенных перегноем. Влагоемкость меняется по генетическим горизонтам и высоте почвенной колонны. В почвенной колонне как бы заключена водная колонна, форма которой зависит от высоты столба почвенного грунта над зеркалом и от условия увлажнения с поверхности. Форма такой колонны будет соответствовать природной зоне. Эти колонны в природных условиях меняются по сезонам года, а также от погодных условий и колебания влажности почвы. Водная колонна изменяется, приближаясь к оптимальной, в условиях окультуривания и мелиорации почвы. Различаются следующие виды влагоемкости :

  • а) полная (ПВ);
  • б) максимальная адсорбционная (МАВ);
  • в) капиллярная (КВ);
  • г) наименьшая полевая (НВ)
  • д)предельная полевая влагоемкость (ППВ).

Все виды влагоемкости меняются с развитием почвы в природе и еще более - в производственных условиях. Даже одна обработка (рыхление спелой почвы) может улучшить ее водные свойства, увеличивая полевую влагоемкость. А внесение в почву минеральных и органических удобрений или других влагоемких веществ может на длительное время улучшить водные свойства или влагоемкость. Это достигается заделкой в почву навоза, торфа, компоста и других влагоемких веществ. Мелиорирующее действие может оказывать внесение в почву влагоудерживающих высокопористых влагоемких веществ типа перлитов, вермикулита, керамзита.

Кроме основного источника лучистой энергии, в почву поступает тепло, выделяемое при экзотермических, физико-химических и биохимических реакциях. Однако тепло, получаемое в результате биологических и фотохимических процессов, почти не изменяет темммпературу почвы. В летнее время сухая нагретая почва может повышать температуру вследствие смачивания. Эта теплота известна род названием теплоты смачивания. Она проявляется при слабом смачивании почв, богатых органическими и минеральными (глинистыми) коллоидами. Весьма незначительное нагревание почвы может быть связано с внутренней теплотой Земли. Из других второстепенных источников тепла следует назвать «скрытую теплоту» фазовых превращений, освобождающуюся в процессе кристаллизации, конденсации и замерзании воды и т. д. В зависимости от механического состава, содержания перегноя, окраски и увлажнения различают теплые и холодные почвы. Теплоемкость определяется количеством тепла в калориях, которое необходимо затратить, чтобы поднять температуру единицы массы (1г) или объема (1 см3) почвы на 1оС. Из таблицы видно, что с увеличением влажности теплоемкость меньше возрастает у песков, больше у глины и еще больше у торфа. Поэтому торф и глина являются холодными почвами, а песчаные - теплыми. Теплопроводность и температуропроводность. Теплопроводность - способность почвы проводить тепло. Она выражается количеством тепла в калориях, проходящего в секунду через площадь поперечного сечения 1 см2 через слой 1 см при температурном градиенте между двумя поверхностями 1оС. Воздушно-сухая почва обладает более низкой теплопроводностью, чем влажная. Это объясняется большим тепловым контактом между отдельными частицами почвы, объединенными водными оболочками. Наряду с теплопроводностью различают температуропроводность - ход изменения температуры в почве. Температуропроводность характеризует изменение температуры на единице площади в единицу времени. Она равна теплопроводности, деленной на объемную теплоемкость почвы. При кристаллизации льда в порах почвы проявляется кристаллизационная сила, вследствие чего закупориваются и расклиниваются почвенные поры и возникает так называемое морозное пучение. Рост кристаллов льда в крупных порах вызывает подток воды из мелких капилляров, где в соответствии с уменьшающимися их размерами замерзание воды запаздывает.

Источники поступающего в почву тепла и расходования его - неодинаковые для различных зон, поэтому тепловой баланс почв может быть и положительным и отрицательным. В первом случае почва получает тепла больше, чем отдает, а во втором - наоборот. Но тепловой баланс почв любой зоне с течением времени заметно изменяется. Тепловой баланс почвы поддается регулированию в суточном, сезонном, годичном и многолетнем интервале, что позволяет создать более благоприятный термический режим почв. Тепловым балансом почв природных зон можно управлять не только через гидромелиорации, но и соответственными агромелиорациями и лесомелиорациями, а также некоторыми приемами агротехники. Растительный покров усредняет температуру почвы, уменьшая ее годовой теплооборот, способствуя охлаждению приземного слоя воздуха вследствие транспирации и излучения тепла. Большие водоемы и водохранилища умеряют температуру воздуха. Весьма простые мероприятия, например культура растений на гребнях и грядах, дают возможность создать благоприятные условия теплового, светового, водно-воздушного режима почвы на Крайнем Севере. В солнечные дни среднесуточная температура в корнеобитаемом слое почвы на гребнях на несколько градусов выше, чем на выровненной поверхности. Перспективно применение электрического, водяного и парового отопления, используя промышленные отходы энергии и неорганические природные ресурсы. Регулирование теплового режима и теплового баланса почвы вместе с водно-воздушным имеет весьма большое практическое и научное значение. Задача заключается в том, чтобы управлять тепловым режимом почвы, особенно уменьшением промерзания и ускорением оттаивания ее.


Наименьшая (или предельная полевая) влагоемкость показывает количество воды, удерживаемое почвой в практически неподвижном состоянии после обильного полива и просачивания избыточной воды под влиянием силы тяжести. Определение делается в природных условиях. При залегании грунтовых вод глубже 3 м определение показывает «истинную наименьшую влагоемкость», а при более близких грунтовых водах - более высокое содержание, достигающее величины «капиллярной влагоемкости». Глубину грунтовых вод следует указывать при определении.
Влагоемкость, определяемая описанным ниже методом, называется различными исследователями: общая влагоемкость (Качинский, Вадюнина), предельная полевая влагоемкость (Астапов, Розов, Долгов), наименьшая полевая влагоемкость (Березинь, Рыжов, Зимина), полевая влагоемкость (Ревут, Гречин).
Порядок определения наименьшей влагоемкости. Выбирают ровный, типичный для данного поля участок и на нем окружают земляным валиком высотой 30-40 см площадку размером 1,5х1,5 л. Землю для насыпания валиков берут вне площадки, поверхность площадки оберегают от затаптывания. Для ограждения площадки вместо земляных валиков иногда применяют деревянные или железные рамы. Поблизости от площадки закладывают и описывают почвенный разрез, в стенке которого берут образцы почвы по генетическим горизонтам для определения влажности, объемного и удельного веса почвы.
Для промачивания почвы до 1,5 м на каждый квадратный метр площадки надо приготовить 200-300 л на суглинистых или 200 л воды на супесчаных почвах. Во избежание размыва поверхности под струю воды, подаваемой на площадку, необходимо подложить кусок фанеры или слой соломы. Вода подается постепенно, так чтобы не создавать слоя воды на поверхности выше б см.
Когда вся поданная на площадку вода впитается в почву, ее покрывают для предохранения от испарения с поверхности клеенкой или пластиком и толстым слоем соломы (до 0,5 м), которую прижимают сверху землей.
Просачивание излишней воды из первого метра почвы в основном заканчивается на песчаных почвах за 1-2 суток, на суглинистых - 3-5 и глинистых - 5-10 суток. Однако и после этого срока почвенная влага продолжает медленно просачиваться вниз. Поэтому рекомендуют определение наименьшей влагоемкости в три срока - через 1,3 и 10 суток, обозначая их индексами HB1, HB3 и HB10. Для песчаных и супесчаных почв достаточно определить HB1 и HB3.
Почвенные пробы для определения влажности отбирают буром с трех-пяти мест послойно через 10 см. Для этого на площадку кладут доску и, стоя на ней и не снимая покрытия почвы, производят бурение в центральной части площадки 80х80 см. Отверстия скважин после взятия проб плотно забивают почвой.
Наименьшую (предельную полевую) влагоемкость можно определить во всех случаях обильного увлажнения почвы - ранней весной после полного оттаивания почвы и впитывания талых вод или после полива орошаемых участков. После увлажнения выбранную площадку закрывают клеенкой, соломой и через соответствующие интервалы бурят и определяют влажность почвы площадки.
Наименьшая влагоемкость зависит от механического состава - от 20% объема супесчаных до 40% от объема суглинистых и глинистых почв, и несколько уменьшается с глубиной. Наименьшая влагоемкость тяжелой почвы зависит также от сложения, приемов обработки, структурности, внесения извести.
Вычисляют наименьшую влагоемкость послойно для каждых 10 см в процентах от объема почвы, поэтому необходимо определять объемный вес почвы. Если наименьшая влагоемкость составляет 70-80% общей порозности, то это считается благоприятным для сельскохозяйственных культур, при 80-90% - посредственным, а свыше 90% - неудовлетворительным из-за недостаточного содержания воздуха.

Изучение динамики доступных питательных веществ в почве должно» сочетаться с наблюдениями за растениями, за развитием микробиологических процессов и за водными свойствами почвы, с которыми пищевой режим находится в непосредственной связи.
Чаще всего при агрохимическом исследовании в полевых условиях приходится учитывать динамику изменения запасов воды, доступной для растений. Количество доступной воды в почве определяется по разности общего запаса воды и запаса недоступной влаги, о котором судят по влажности завядания или, с меньшей точностью, по максимальной гигроскопичности. Обычные приемы агротехники (удобрение, изменение структурности) влияют на влажность завядания незначительно; более резко отражаются на этой величине приемы землевания песчаных почв или пескования глин.
По величине предельной полевой влагоемкости судят о максимальных удерживаемых почвой запасах общей и полезной влаги, что необходимо знать для определения нормы полива, воздухосодержания и т. д. Изменение сложения почвы при обработках и изменение структуры почвы могут заметно отразиться на этой величине.
Для создания оптимальных условий роста растений в вегетационных опытах влажность почвы при поливах доводят до 60-70% от величины полной влагоемкости, или 70-80% капиллярной, или 100% наименьшей влагоемкости.
Предельная полевая влагоемкость отражает свойство почвы удерживать влагу в практически неподвижном состоянии после обильного увлажнения и просачивания всей избыточной воды под влиянием силы тяжести. Определение делается в природных условиях. При глубоких грунтовых водах предельная полевая влагоемкость показывает истинную наименьшую влагоемкость, а при близких грунтовых водах значительно превышает эту величину и может достигать величины капиллярной влагоемкости. Глубину грунтовых вод следует указывать при определении.
Руководство по почвенно-мелиоративным исследованиям рекомендует следующий порядок определения:
Выбирают ровную площадку, типичную для данного поля. Для защиты от растекания поливной воды площадку размером 2 м х 2 м снаружи окружают утрамбованным земляным валиком высотой до 20-30 см. В середине площадки устанавливается квадратная деревянная или железная рама 1 л х 1 м с высотой бортов 15-18 см, и граница ее очерчивается ножом вдоль внутренней стороны. Затем рама снимается, и ножом в почве прорезается углубление такой ширины, чтобы рама плотно входила в него на глубину 6-8 см. С внешней стороны вдоль рамы почва утрамбовывается полосой в 5-6 см. Если рамы нет, то внутренняя площадка окружается утрамбованным земляным валиком. Внутренняя площадка в 1 м2 является учетной, ее окружает защитная полоса, предохраняющая от растекания в стороны воды учетной площадки.
Вблизи площадки закладывается и описывается почвенный разрез, в стенке которого берут образцы почвы по генетическим горизонтам для определения влажности, объемного и удельного веса и вычисления скважности.
На площадку и защитную полосу нужно подать такой объем воды, который полностью насытит водой слой почвы мощностью 1 м. Для вычисления объема воды используют данные об имеющемся запасе воды в слое почвы и общей скважности этого слоя; рассчитанную норму полива увеличивают в полтора раза для гарантии лучшего промачивания.
Для степной зоны скважность почв глинистых и тяжелосуглинистых колеблется в пределах 45-50%, средних и легких суглинков - 40-45, супесчаных - 35-40 и песчаных 30-35%; по этим данным можно приближенно рассчитать объем воды, необходимый для залива площадки. Например, при общей скважности слоя 45% и запасе воды в 1-метровом слое 1500 м3/га для насыщения 1-метрового слоя почвы потребуется10000 1 45/100 -1500 = 3000 м3/га, или 300 л/м2.
Заготовив достаточный объем воды, начинают подачу воды на защитную полосу и на учетную площадку, подложив под струю воды лист фанеры или 10-сантиметровый слой соломы, во избежание размыва поверхности. Вначале высоту слоя воды над поверхностью почвы доводят до 2-3 см, а когда верхний слой почвы будет насыщен, увеличивают подачу воды и доводят слой воды до 5-6 см, который поддерживают до израсходования всей расчетной нормы. После впитывания воды делянку и защитную полосу покрывают слоем соломы, травы или другим материалом, уменьшающим испарение с поверхности, и придавливают его сверху слоем земли.
Просачивание излишней воды для первого метра на песчаных почвах обычно заканчивается через 1-2 суток, на суглинистых - через 3-5 суток и на глинистых - через 5-10 суток. На другой день по истечении этих сроков буром берут почвенные пробы в 4-5 местах площадки послойно через 10 см для определения влажности почвы. Через один-два дня взятие проб и определение влажности повторяют. Если влажность верхних горизонтов за это время понизилась, а нижних повысилась, то значит, что просачивание воды продолжается; в таком случае определение влажности необходимо повторить еще раз спустя один-два дня. Если влажность изменилась менее чем на 1%, определение влажности больше не повторяют и величину ее принимают за предельную полевую влагоемкость, хотя медленное передвижение воды будет продолжаться и далее.
Величина предельной полевой влагоемкости зависит от механического состава (изменяясь от 20% для супесчаной до 40% для тяжелосуглинистой почвы) и уменьшается с глубиной. Предельная влагоемкость суглинистой почвы зависит и от сложения; приемы обработки, изменение структурности, внесение извести также влияют на эту величину.
Вычисляют предельную полевую влагоемкость в процентах от объема, послойно, для каждого горизонта. Если предельная полевая влагоемкость составляет 70-80% от общей порозности, то это считается благоприятным для сельскохозяйственных культур; при 80-90% - посредственным, а свыше 90% - неудовлетворительным.

Влагоёмкость почвы

Влагоёмкость (водоёмкость, водоудерживающая сила, капиллярность почвы) - свойство почвы принимать и задерживать в своих волосных скважинах известное количество капельножидкой воды , не позволяя последней стекать.

Процентное отношение её веса к весу почвы или, соответственно, её объёма к объёму почвы, выраженное в процентах, называется показателем влагоёмкости почвы.

Влагоёмкость почвы - величина, количественно характеризующая водоудерживающую способность почвы ; способность почвы поглощать и удерживать в себе от стекания определённое количество влаги действием капиллярных и сорбционных сил. В зависимости от условий, удерживающих влагу в почве, различают несколько видов влагоёмкости почвы: максимальную адсорбционную , капиллярную, наименьшую и полную. Максимальная адсорбционная влагоёмкость почвы, связанная влага, сорбированная влага, ориентировочная влага - наибольшее количество прочно связанной воды, удерживаемое сорбционными силами. Чем тяжелее гранулометрический состав почвы и выше содержание в ней гумуса , тем больше доля связанной, почти недоступной влаги почве. Капиллярная влагоёмкость почвы - максимальное количество влаги, удерживаемое в почвогрунте над уровнем грунтовых вод капиллярными (менисковыми) силами. Зависит от мощности слоя, в котором она определяется, и его удалённости от зеркала грунтовых вод. Чем больше мощность слоя и меньше его удаление от зеркала грунтовых вод, тем выше капиллярная влагоёмкость почвы. При равном удалении от зеркала её величина обусловлена общей и капиллярной пористостью , а также плотностью почвы. С капиллярной влагоёмкостью почвы связана капиллярная кайма (слой подпёртой влаги между уровнем грунтовых вод и верхней границей фронта смачивания почвы). Капиллярная влагоёмкость почвы характеризует культурное состояние почвы. Чем почва менее оструктурена, тем больше в ней происходит капиллярный подъём влаги, её физическое испарение и, зачастую, накопление в верхней части легкорастворимых, в т.ч. и вредных для растений солей. Наименьшая - полевая влагоёмкость почвы - кол-во воды, фактически удерживаемое почвой в природных условиях в состоянии равновесия, когда устранено испарение и дополнительный приток воды. Эта величина зависит от гранулометрического, минералогического и химического состава почвы, ее плотности и пористости. Применяется при расчёте поливных норм. Полная влагоёмкость почвы, водовместимость почвы - содержание влаги в почве при условии полного заполнения всех пор водой. При полной влагоёмкость почвы влага, находившаяся в крупных промежутках между частицами почвы, непосредственно удерживается зеркалом воды или водоупорным слоем. Водовместимость почвы рассчитывается по её общей пористости. Значение величины полной влагоёмкости почвы необходимо при подсчете способности водовпитывания без образования поверхностного стока, для определения способности водоотдачи почвы, высоты подъёма грунтовых вод при обильных дождях или орошении.


Wikimedia Foundation . 2010 .

Смотреть что такое "Влагоёмкость почвы" в других словарях:

    влагоёмкость почвы - влагоёмкость почвы, способность почвы поглощать и удерживать влагу. Выражается количеством влаги в процентах от массы или объёма сухой почвы или в мм водного слоя. Зависит от гранулометрического состава и структуры почвы, содержания в ней гумуса … Сельское хозяйство. Большой энциклопедический словарь

    ВЛАГОЁМКОСТЬ ПОЧВЫ - способность почвы поглощать и удерживать влагу. Выражается кол вом влаги в процентах от массы или объёма сухой почвы или в мм водного слоя. Зависит от гранулометрич. состава и структуры почвы, содержания в ней гумуса. Наиб. влагоёмки мощные… … Сельско-хозяйственный энциклопедический словарь

    Способность почвы поглощать и удерживать определённое количество влаги. В. п. выражается в процентах к массе сухой почвы или к её объёму, а также в миллиметрах водного слоя. См. Водный режим почвы …

    ВЛАГОЁМКОСТЬ ПОЧВЫ - величина, количественно характеризующая водоудерживающую способность почвы … Словарь ботанических терминов

    Влагоемкость (водоемкость, водоудерживающая сила или капиллярность почвы) свойство почвы принимать и задерживать в своих волосных скважинах известное количество капельножидкой воды, не позволяя последней стекать. Это волосная, или капиллярная,… … Википедия

    воздухоёмкость почвы - Объём почвенных пор, содержащих воздух, при влажности почвы, соответствующей её влагоёмкости. [Словарь геологических терминов и понятий. Томский Государственный Университет] Тематики геология, геофизика Обобщающие термины почвоведениеэкзогенные… … Справочник технического переводчика

    Профиль пахотной каштановой почвы, Волгоградская область, Россия Почва поверхностный слой литосферы Земли, обладающий плодородием и представляющий собой полифункциональную, гетерогенную, открытую, четырёхфазную (твёрдая, жидкая, газообразная… … Википедия

    Влагоемкость почвы - ВЛАГОЁМКОСТЬ ПОЧВЫ способность почвы поглощать и удерживать влагу. Выражается в количественных показателях (в % влаги к весу почвы или её объему). Экологический энциклопедический словарь. Кишинев: Главная редакция Молдавской советской… … Экологический словарь

    Совокупность всех явлений, определяющих поступление, передвижение, расход и использование растениями почвенной влаги. В. р. п. важнейший фактор почвообразования и почвенного плодородия. Главный источник почвенной влаги атмосферные осадки; … Большая советская энциклопедия

    Болотные торфяные, или торфяно болотные, почвы, группа почвенных типов, формирующихся в условиях избыточного увлажнения атмосферными, застойными пресными или слабопроточными в той или иной степени минерализованными грунтовыми водами. Т. п … Большая советская энциклопедия

Поделиться