Доработка системы отопления. Реконструкция системы отопления многоквартирного дома

Размещено 28.09.2011 (актуально до 28.09.2012)

Энергоэффективность новых зданий рассчитывается уже на стадии проектирования. Решения и меры, которые принимаются, нацелены на достижение минимального потребления энергии в здании. Как правило, эти меры изложены в национальных правилах строительства в каждой стране.


Необходимость реконструкции систем ОВК


Энергоэффективность новых зданий рассчитывается уже на стадии проектирования. Решения и меры, которые принимаются, нацелены на достижение минимального потребления энергии в здании. Как правило, эти меры изложены в национальных правилах строительства в каждой стране. Конечно, много информации о энергосберегающих решениях и технологиях могут быть найдены в многих доступных источниках или технических семинарах, которые проводят компании работающие в области ОВК.


Но ситуация, которая происходит в старых и не реконструированных зданиях, гораздо хуже. Эти здания используют огромное количество энергии, потому что при строительстве их использовались старые технологии, не позволяющие обеспечить соответствующую теплоизоляцию. Как следствие, большие потери тепла и повышенное потребление энергии. Системы ОВК этих зданий устарели, несбалансированны и не отлажены, поэтому не в состоянии обеспечить комфортный микроклимат и потребляют избыточное количество электрической и тепловой энергии.


Исследования подтвердили, что системы ОВК используют более 60% всей потребляемой энергии зданием. В жилом секторе затраты на энергию, используемую для отопления составляют приблизительно 80% от общих затрат. Поэтому, при реконструкции надо учитывать не только работы по улучшению теплоизоляции фасадов, замене старых окон на новые, остеклению балконов и лоджий, а также полный ремонт систем отопления и вентиляции.


Фазы реконструкции систем отопления


Если есть финансовые и технические возможности, старые системы отопления рекомендуется реконструировать полностью, при этом заменить оборудование на всех стадиях: производства (тепловые пункты, котельные), распределения (трубопроводы, регулирующая арматура) и потребления тепла (радиаторы, калориферы, газовые конвекторы , теплые полы и т.д.). Таким образом, мы сможем достичь наилучших показаний по энергосбережению. Не всегда возможно провести реконструкцию в полном объеме, но даже при минимальных улучшениях в системе можно увеличить ее эффективность работы и при этом обеспечить требуемые условия комфорта в каждом помещении. В обоих случаях, для достижения результата без гидравлической балансировки систем отопления не обойтись.


Реконструкция тепловых пунктов


Наиболее распространенным теплогенератором для системы отопления здания является тепловой пункт. Его цель заключается в обеспечении необходимого количества тепла, которое зависит от окружающих климатических условий и температурного графика системы, на индивидуальные потребности здания от централизованной системы теплоснабжения. Существует два типа тепловых пунктов, которые нашли широкое применение, это: тепловые узлы без автоматического контроля температуры теплоносителя на подаче с помощью элеватора или зависимые подстанции с автоматическим регулированием температуры (рисунок).


Основные недостатки таких систем:


*Поддержание микроклимата помещений зависит от тепловых сетей.

*Качество теплоносителя в системе отопления зависит от централизованного теплоснабжения.

*Нет возможности уменьшить потребление энергии - указанные системы не является нергоэффективными.

*Здание имеет гидравлическую зависимость.

*Отсутствуют установки поддержания давления - при этом статическое давление в системе зависит от давления в теплосети.


Лучшая энергоэффективность достигается при полной реконструкции тепловых пунктов, когда элеваторный зависимый узел заменяют на независимый с автоматическим контролем температуры (рисунок ниже).



Он состоит из теплообменника, который разделяет систему отопления здания и тепловую сеть, обеспечивая при этом ее независимое функционирование.


Для того, чтобы контролировать и регулировать тепловую энергию здания согласно реальным потребностям, требуется установка автоматической системы управления температурой теплоносителя на подаче. Она состоит из регулирующего клапана, который управляется электрическим приводом (рисунок слева) по сигналу от электронного контроллера с датчиками температуры. Система погодозависимого регулирования определяет, изменения внешней температуры, а также теплопотребления здания и автоматически увеличивает или уменьшает общую величину теплопоступлений.


Данные системы позволяют значительно снизить затраты на отопление (но только при условии, что система отопления является сбалансированной). Для обеспечения быстрого, точного и плавного регулирования, а также отсутствия проблем с закрытием регулирующего клапана, рекомендуется установка регулятора перепада давления (рисунок).


В связи с тем, что система отопления здания становится независимой от сети централизованного теплоснабжения, необходимо обеспечить в ней поддержание статического давления (рисунок ниже).



Эту функцию выполняют расширительный бак с отключающим и сливным клапаном для обслуживания (рисунок ниже слева), устройство подпитки и модуль контроля давления.


Предохранительный клапан в тепловых пунктах (рисунок справа) необходим для защиты слабых звеньев системы от слишком большого давления, когда установка поддержания давления находится на обслуживании или не работает.


Расширительный бак является одним из важнейших элементов системы отопления. Когда теплоноситель нагревается до рабочей температуры, он расширяется, увеличивая свой объем при этом. Если это дополнительное количество теплоносителя негде разместить, тогда статическое давление в системе будет повышаться.


При достижении, в этом случае, максимально допустимого давления, предохранительный клапан откроется и сбросит избыток объема теплоносителя, уменьшая при этом статическое давление системы. В случае отсутствия предохранительного клапана или не правильном его подборе и настройке, слишком большое давление может привести к повреждению потребителей, труб, соединений и других элементов системы. Если же предохранительный клапан открывается слишком рано или слишком часто, он освобождает значительное количество теплоносителя из системы. При этом, в период, когда система снижает свой температурный режим (требуется меньшая мощность нагрева или система выключается по окончании отопительного сезона), теплоноситель сжимается и это приводит к снижению статического давления. Если статическое давление упадет ниже минимально необходимого, в верхних участках системы будет создано разрежение, что приведет к завоздушиванию. Воздух в гидравлической системе препятствует нормальной циркуляции и может блокировать потоки в некоторых участках, что приводит к недогреву потребителей и нарушению микроклимата. Воздух также является дополнительной причиной шума в системе, а кислород, который находится в нем, вызывает коррозию деталей из стали. В тоже время, недостаток теплоносителя в системе должен быть компенсирован с помощью систем подпитки, что также влечет к дополнительным затратам и без водоподготовки приносит новые порции воздуха и новые проблемы.


Задача расширительного бака - это постоянное поддержание статического давления в системе между минимальным и максимально-допустимым значениями, с учетом возможного расширения или сжатия теплоносителя.


Что делает расширительный бак надежным?


Расширительный бак является одним из наиболее важных элементов в системе. По этому, важно знать, что именно обеспечивает его правильное функционирование, надежность и длительный срок службы.


Качественный и надежный бак должен иметь следующую конструкцию. Он состоит из специального резинового мешка, помещенного вовнутрь стального сосуда. Этот мешок позволяет разместить избыточный объем теплоносителя, образовавшийся при нагреве и как следствие расширении. При снижении температуры бак возвращает необходимое количество теплоносителя обратно в систему. В сосуд под давлением нагнетается воздух, который действует на резиновый мешок с теплоносителем, позволяя таким образом поддерживать необходимое давление в системе.


Ниже указаны технические характеристики, которые описывают качество расширительного бака:


* Герметичность конструкции для поддержания постоянного объема сжатого воздуха и качественной работы расширительного бака на протяжении многих лет эксплуатации. Это возможно только благодаря полностью сварной конструкции стального сосуда.

* Максимальная плотность резинового мешка для предотвращения диффузии сжатого воздуха из воздушной камеры через мешок в теплоноситель, что может создать проблемы с давлением и коррозией. Cамая высокая защита от диффузии - у мешков «Pneumatex» из бутил каучука. Бутил каучук - это резина с наибольшей герметичностью для воздуха среди всех известных типов резиновых эластомеров. По этой причине бутил каучук используется для производства автомобильных шин.

* Надежность соединения резинового мешка и стального сосуда. Проблемой простых расширительных баков является повреждение мембраны в месте, где она подключена к стенкам стального сосуда, по причине ее частого движения и растяжения. Чтобы избежать этой проблемы, соединение мешка с сосудом должно быть как можно меньше и растяжение в месте соединения, как можно меньше.

* Теплоноситель не должен находится в контакте со стальным сосудом для предотвращения коррозии внутри расширительного бака. Баки, где вода поступает в резиновый мешок, являются устойчивыми к коррозии.


Реконструкция системы отопления


Реконструкция тепловых пунктов является только одной из основных фаз в полном обновлении системы отопления. При этом, если сделать минимальные изменения и только в одном участке системы, энергосберегающий эффект может быть не полностью достигнут. Так что же мы все таки должны сделать, чтобы система отопления была надежной с минимально необходимым потреблением энергии?


В старых зданиях существующие системы отопления, как правило, имеют однотрубный тип подключения радиаторов без устройства контроля и управления температурой в помещении (рисунок). Его основными недостатками являются:


* Постоянный расход - максимальное потребление тепловой энергии без возможности изменения требуемой тепловой нагрузки.

* Отсутствие индивидуального управления температурой в помещении.

* Системы не сбалансированы - в них возникают проблемы с правильным распределением потоков.

* Старые и часто аварийные трубы, арматура, радиаторы и другое оборудование.

* Много воздуха в системе - что приводит к коррозии, шламу, дополнительному шуму и снижению производительности системы отопления.

* Проблемы со статическим давлением.

* Требуемый уровень комфорта в помещениях не достигнут и не поддерживается должным образом.


Индивидуальное регулирование комнатной температуры.


Для человеческого организма обеспечение комфорта, требует определенной температуры воздуха в помещении, при этом она должна постоянно поддерживаться и не изменяется. Эта температура зависит от целого ряда факторов - теплопоступления от нагревательных приборов (радиаторов), дополнительных источников тепла (солнечная энергия, люди, электрическая и бытовая техника, нагрев во время приготовления пищи) и теплопотери, которое зависят от температуры наружного воздуха, ветрености, географического расположения и ориентации здания, его конструкции, изоляции и т.д.


В помещениях, где температура автоматически не контролируется, нет возможности использовать эти дополнительные теплопоступления и таким образом уменьшить затраты энергии, что доставляется системой отопления здания. Обычно это приводит к перегреву помещений, при этом избыток тепла выпускают через открытые окна. Все это в итоге приводит к большим энергетическим и финансовым затратам.


В старых системах расход теплоносителя всегда постоянный и нету возможности свести к минимуму затраты на отопление и энергопотребление насосов, когда для помещений требуется лишь малая часть тепловой энергии.


Для обеспечения наилучшей энергоэффективности, рекомендуется заменить старые системы на новые с двухтрубной схемой разводки и автоматическим управлением температурой в помещении (на рисунке ниже). Если же нет возможности перейти к двухтрубной схеме, тогда необходимо установить устройства автоматического регулирования температуры в помещении. При этом системы должны быть гидравлически сбалансированы.



Чтобы обеспечить правильный индивидуальный контроль температуры в помещении, необходимо заменить старые радиаторы на более эффективные новые, при этом установить на каждый радиатор термостатический клапан (рисунки справа и слева) с термостатической головкой, что позволит контролировать теплоотдачу радиатора в помещение.


В случае однотрубной системы, одним из вариантов, для индивидуального контроля комнатной температуры, может быть применение термостатических вентилей с малым сопротивлением (рисунок 1) или же трехходовых термостатических клапанов (рисунок 2).

рисунок 1 рисунок 2


Термостатический клапан с термостатической головкой будут автоматически поддерживать температуру в диапазоне заданной настройки. Термоголовка имеет шкалу, где каждый знак соответствует значению поддерживаемой температуры в помещении.


Некоторые производители показывают эту информацию непосредственно на корпусе термостатической головки. Когда фактическая комнатная температура больше, чем требуется, жидкость в термоголовке расширяясь начинает закрывать термостатический клапан, уменьшая таким образом расход теплоносителя через радиатор. Мощность радиатора уменьшается и температура в помещении становится правильной. При уменьшении температуры, терморегулятор реагирует противоположным образом, открывая клапан, позволяя увеличить мощность радиатора и повысить температуру до заданного значения (рисунок ниже).



Радиаторы при этом получают только то количество энергии, которое требуется для обеспечения комфорта в каждом конкретном помещении, при этом тепловая энергия всей системы эффективно используется. Уровень комфорта и экономия энергии зависят от качества работы термоголовки. Чем точнее, стабильней и надежней термостатическая головка, тем больше тепловой энергии сохраняется. Термоголовки могут быть разных типов и предназначений. Например, термостатическая головка Heimeier тип K (рисунок 3) идеально подходит для контроля температуры в комнатах жилых зданий. Для школ, детских садов, офисов и других общественных зданий рекомендуется использовать термостатические головки К с защитой от кражи или головки тип В с большей степенью защиты (рисунок 4). В зданиях с высокими гигиеническими требованиями, рекомендуется использование термоголовки DX (рисунок 5), которая имеет гигиенические сертификаты.


Но главное условие для того, чтобы иметь качественное поддержание и контроль температуры в каждом отдельном помещении - это обязательная балансировка системы отопления.

рисунок 3 рисунок 4 рисунок 5


Балансировка систем отопления.


Еще одной большой проблемой в старых системах является избыток тепла (перегрев) в одних помещениях и недостаток его (недогрев) в других. Обычно перегреты те помещения, которые находятся близко к тепловому пункту и чем дальше от ИТП тем холоднее. Такие системы используют большое количество энергии.


Причиной этой проблемы, является неправильное распределение теплоносителя в системе, из-за ее гидравлического дисбаланса. Каким расход будет в каждом участке системы зависит от гидравлического сопротивления этого участка. Это сопротивление изменилось в старых системах вследствие коррозии и засорения труб, грязенакоплений, ремонта или реконструкции, при замене потребителей и т.д.


В старых системах устройства для балансировки не были предусмотрены. Не было возможности провести балансировку по той причине, что в то время не знали как это сделать. Проблемы, которые появлялись из-за дисбаланса системы, решались другими но не всегда удачными способами.


Одним из возможных решений, для устранения проблем в недогретых помещениях, является увеличение мощности насосов. Это приводит к тому, что в этих помещениях станет теплее, но комнаты, которые уже и так получали слишком много тепла, будут все более перегретыми и излишки тепла жильцы или арендаторы вынуждены выпускать через открытые окна. Кроме того, при увеличении мощности насосов их энергопотребление растет.


Вторым решением может быть повышение температуры теплоносителя. Но и в этом случае происходит похожая ситуация с перегревом части помещений при значительном увеличении затрат на отопление.


Основной целью балансировки систем отопления, является обеспечение всех участков системы необходимым количеством тепловой энергии при проектных (худших) условиях, когда наружная температура минимально возможная. В то же время, при всех других условиях, система будет работать, как и ожидалось.


Важно, чтобы после балансировки системы, использовалось минимально необходимое количество тепловой и электрической энергии.


Для достижения этой цели, необходимо три основных инструмента - это балансировочные клапаны с возможностью точного измерения, измерительные приборы и методы балансировки.


От того, как точно Вы можете измерять на балансировочных клапанах, и какие методы будете использовать, зависит результат балансировки.


Балансировочный клапан - это клапан Y-типа, с возможностью регулирования преднастройки, которая позволяет ограничивать расход, четко указанной шкалой на ручке, с двумя самоуплотняющими измерительными ниппелями для измерения перепада давления, расхода и температуры (рисунок).


Клапан называется Y-типа потому, что регулирующий конус, в таком случае, находится под оптимальным углом к направлению потока через клапан. Данная конструкция необходима для лучшей точности и сводит к минимуму влияние потока воды на измерения.


Балансировочный клапан выступает в качестве запорной арматуры и может быть также использован для дренажа. Для выполнения качественной балансировки, клапаны должны быть подобраны правильного размера и установлены с соблюдением правил. Все это должно быть предусмотрено инженером-проектировщиком системы отопления.


Для измерения расхода, перепада давления и температуры на установленных балансировочных клапанах, а также применения методов для проведения балансировки системы используется специальный прибор (рисунок).


Это многофункциональное компьютерное устройство с очень точными датчиками и интегрированными функциями измерения, балансировки и устранения ошибок, дополнительным гидравлическим калькулятором и другими полезными функциями, которые помогают быстрой и точной наладке системы. Балансировочный прибор может быть связан со специальным программным обеспечением для обновления и загрузки данных с ПК или же отправки результатов балансировки на компьютер.


Но использовать только балансировочные клапаны и измерительный прибор недостаточно. Вы должны знать, что и как с ними делать. В противном случае процесс наладки системы отопления на правильную работу, которая позволит обеспечить комфортный микроклимат и минимальное потребление энергии, покажется просто кошмаром. Как же тогда сбалансировать эту систему? Необходимо применить методику!


Прежде всего, гидравлическая система, должна быть разделена на отдельные части (гидравлические модули), с помощью так называемых «клапанов партнеров».


Следующая стадия сбалансировать все гидравлические модули используя ТА методы, начиная от потребителей, ответвлений, стояков, магистралей, коллекторов заканчивая тепловыми пунктами. При использовании методики, на всех балансировочных клапанах этой системы и участках на которых они установлены, будет достигнут проектный расход теплоносителя, при создании минимальных потерь давления на клапанах.


После этого, когда вся система сбалансирована с минимальными потерями давления - переключить насос на минимально необходимую скорость для этой системы (если система не сбалансирована, обычно насос работает на максимум) и настроить общий расход системы на главном клапане партнере, расположенном у насоса. В результате, насос будет использовать минимальное количество энергии, а тепловая энергия, необходимая для нагрева теплоносителя до соответствующей температуры будет эффективно использоваться. После завершения работ по балансировке, клиент получает протокол балансировки, где указаны необходимые и фактически достигнутые значения расходов и настройки балансировочных клапанов. Это документ, подтверждает балансировку системы и гарантирует ее работу, как это ожидалось по проекту.


Очень важной функцией балансировочных клапанов является возможность проводить диагностику системы. Когда система смонтирована и функционирует, очень трудно определить ее реальное качество работы и эффективность, если нет возможности это измерять. Используя балансировочные клапаны с измерительными ниппелями, можно определять неисправности в работе системы, узнавать ее реальное состояние, характеристики и принимать правильные решения в случае возникновения проблем. Диагностика позволяет обнаружить различные ошибки, причины сбоев и оперативно их ликвидировать, пока не стало слишком поздно.


Сепараторы воздуха и шлама в системах отопления.


Для того чтобы иметь возможность сбалансировать систему, она должна быть чистой и при этом без воздуха. Очень часто проблемы в системе появляются из-за попадания воздуха и коррозии. Воздух выступает в качестве теплоизоляции: где воздух, нет теплоносителя и тепло не передается от гидравлической системы в помещение. Пузырьки воздуха могут прилипать к внутренним стенкам радиатора, уменьшая его теплоотдачу. По причине воздушных пробок в верхней части системы и в потребителях, расход в них может уменьшиться или даже полностью остановиться. При этом, помещения перестанут отапливаться. Когда большое количество воздуха циркулирует в системе, появляется шум в радиаторах, трубах, клапанах.


Мы знаем, что воздух представляет собой смесь газов. В нем содержится 78% азота и 21% кислорода. Поэтому, когда воздух попадает в систему, кислород будет также находится в ней и вступать в реакцию с водой и металлами, вызывая при этом коррозию.


Коррозия не только разрушает оборудование, снижая при этом срок службы системы, но и уменьшает ее теплоэффективность и КПД. Ржавчина, как продукт коррозии, образуется слоями в теплообменниках котлов, радиаторах, трубах внутри уменьшая при этом их теплоотдачу, а также увеличивает их гидравлические сопротивления. Когда же ржавчина циркулирует вместе с потоком, она скапливается в разных участках системы (трубы, клапаны, потребители, насосы, фильтры и т.д.) (рисунок). В этом случае она может ограничить расход или заблокировать его.


Но как воздух может появиться в полностью закрытых и герметичных системах отопления?


Существует несколько основных возможностей. Первая возможность - воздух попадает в систему естественным образом растворяясь в воде, которая используется для заполнения системы или ее подпитки. При нагреве температура воды растет и растворенный воздух выделяется из нее в качестве свободного газа, вызывая вышесказанные проблемы при этом. Чем больше вода нагревается, тем больше воздуха из нее выходит.


Вторая возможность - недостаточное статическое давление. Если расширительный бак низкого качества, эго корпус, мембрана или мешок не достаточно надежен, через некоторое время сжатый воздух будет проникать в окружающую среду или систему. При этом давление в воздушной части расширительного бака будет падать или вовсе исчезнет. Бак будет заполнен водой полностью, а в верхней части системы будет создано разрежение.


Системы отопления, герметичны для жидкости и исключают ее утечку, но не для воздуха. Через автоматические воздухоотводчики, резиновые прокладки и другие соединения, воздух будет проникать в систему. Большое его количество может появиться при выполнении сервисных работ, а также при остановке и простое системы.


Для предотвращения вышеуказанных проблем, кроме качественных расширительных баков рекомендуется устанавливать сепараторы воздуха (сепараторы микропузырьков) (рисунок 1) или вакуумные деаэраторы.


Сепаратор за короткий период позволит собрать свободный воздух, циркулирующий с потоком, и удалит его из системы. Для удаления свободный воздух из карманов в верхних участках системы рекомендуются автоматические воздухоотводчики с отсутствием утечек (эффективны при отсутствии циркуляции). Они обеспечат простое и быстрое наполнение и опорожнение системы (рисунок 2).


Шлам или грязь в системе могут быть удалены с помощью сепараторов шлама (рисунок 3). Эти устройства позволяют собирать все, даже наименьшие частички, грязи и ржавчины в специальную камеру в нижней части корпуса.


Задачей обслуживающего персонала останется только открытие дренажного крана, для промывки сепаратора время от времени. Очищая теплоноситель сепараторы шлама не засоряются и не ограничивают циркуляцию. Для их очистки не требуется остановка системы.

рисунок 1 рисунок 2 рисунок 3


Итоги


Возрастающее с каждым годом потребление энергии и выбросы отходов, является одними из самых больших проблем в целом мире. Они имеют большое влияние на нашу окружающую среду, качество жизни, экологию, изменения климата и экономику. Это влияние может быть сведено к минимуму, если мы сделаем наши здания, которые используют более 40% всей производящейся энергии, гораздо более энергоэффективными.


Одним из способов является реконструкция старых систем отопления вентиляции и кондиционирования, которые используют более 60% всей энергии, необходимой для здания. Основными задачами реконструкции должны быть: замена старых элементов системы на более эффективные новые, применение энергосберегающих решений и технологий, качественные балансировка систем, удаление воздуха, очистка, поддержание давления и индивидуальный контроль температуры в каждом помещении.

Компании «Теплорасчет-проект» и «ПСК «Прометей» оказывают услуги по расчету, проектированию, монтажу, реконструкции и модернизации систем отопления и теплоснабжения. Специалистами выполняется газификация объектов , включая подготовку проекта, монтаж, пусконаладочные работы и сервисное обслуживание.

Модернизация систем отопления представляет собой комплекс мероприятий по замене устаревшего или износившегося оборудования систем автономного и централизованного теплоснабжения.

Модернизированная система теплоснабжения соответствует следующим требованиям:

  • Экологичность. Производится на 20-40% меньше выбросов вредных веществ (СО2, СО, NOx, SO2, PbO2).
  • Энергоэффективность. Коэффициент полезного действия выше 80-90%.
  • Экономичность. Энергозатраты в системе снижаются до 30-40%.

В зависимости от состояния имеющегося оборудования, данные показатели достигаются как за счет частичной замены отдельных деталей и узлов, так и за счет полной модернизации систем отопления.

Модернизация источников отопления

В процессе модернизации источников отопления (котельных и ТЭЦ) выполняются следующие работы:

  • проектирование газовых котельных или иных источников производства тепловой энергии;
  • рассчитывается стоимость газификации ;
  • газификация предприятия , микрорайона, многофункционального здания или дома;
  • режимная наладка или замена оборудования химводоподготовки;
  • замена теплогенератора и действующих агрегатов (парообразователь, горелка, насос, отопительный котел);
  • автоматизация систем отопления и регулирования нагрузки.

Модернизация тепловых сетей

В тепловых сетях (подающие и возвратные трубы, транспортирующие тепловую энергию от источника отопления в пункт потребления) модернизация систем отопления выполняется в несколько этапов:

1. Производится детальное обследование на всех участках сети от источника тепла до входа в здание. Осуществляется для определения проблем и причин их появления.

2. Выполняются тепловые и гидравлические расчеты в нескольких вариантах. На основании полученных данных составляются схемы сетей и подбирается оборудование, осуществляющее регулировку (дроссели, клапаны балансировки, автоматические системы регулирования).

3. Проектируется тепловая сеть и способ регулирования нагрузки на основе максимально экономичного и эффективного варианта.

4. Разрабатываются и выполняются пусконаладочные мероприятия.

Модернизация систем теплопотребления

Система теплопотребления (радиаторы, конвекторы, газовые тепловентиляторы , калориферы и другое оборудование, передающее потребителю тепловую энергию) приводится в соответствие с характеристиками тепловой сети и источником отопления по тепловым и гидравлическим показателям. Модернизация систем отопления обеспечивается в случае, если устанавливаются следующие агрегаты:

  • Устройства регулирования объема приточного воздуха. Устанавливаются дополнительно на агрегаты отопления и вентиляции. Позволяют учитывать потребность в нагретом воздухе и контролировать объем подаваемого в помещение тепла в зависимости от времени года и суток;
  • Узлы смешения и регулирования температуры воды. Устанавливаются дополнительно на агрегаты отопления и вентиляции. Температура выдерживается за счет подачи остывшей воды из возвратного трубопровода в радиатор;
  • Газовое инфракрасное отопление . Устанавливается как альтернатива или дополнительно к системам водяного и воздушного отопления. Газификация коттеджа , многоквартирного здания или коммерческого объекта с помощью данного оборудования предполагает расположение нагревателей под потолком для направления теплового излучения на все поверхности в помещении.

Вышеперечисленные агрегаты снабжаются системами автоматического контроля для эффективного управления тепловым режимом отапливаемых помещений.

Чтобы модернизировать систему теплоснабжения, определить перечень работ, рассчитать стоимость или подготовить проект газификации , можно позвонить специалистам ООО «Теплорасчет-проект» и ООО «ПСК «Прометей» по телефонам, размещенным в разделе «Контакты».

Стоимость тарифов на тепло и горячее водоснабжение является «неподъемной» для большинства наших соотечественников. И дело не только в желании коммунальщиков получать как можно больше прибыли. Причины данного явления банальны: удорожание углеводородов и жилой фонд, большая часть которого построена еще в середине прошлого века, когда при строительстве не обращали особого внимания на энергоэффективность. В данной публикации будут рассмотрены меры по модернизации систем отопления жилых домов, которые уже длительное время применяются в ряде европейских стран.

Что значит термомодернизация здания?

Специалисты определяют данное понятие, как комплекс мер по приведению многоквартирного дома в соответствии с современными стандартами энергоэффективности. Сюда входят мероприятия, связанные с уменьшением теплопотерь постройки через стены, перекрытия, крышу, подвалы и пр. Большие потери тепла происходят по причине низких теплотехнических характеристик и плохой герметичности старых окон и дверей. Кроме этого, термомодернизация затрагивает вопросы переоснащения инженерных систем (вентиляция, отопление, ГВС), переход на комбинированные (геотермальные солнечные) источники теплоснабжения.

Важно! Утепление наружных ограждений, без переоборудования систем отопления и вентиляции дома – не эффективно и не дает положительного результата(что и зачастую происходит), а чаще всего, приводит к увеличению энергетических затрат потребителем коммунальных ресурсов.

Будет рассмотрен комплекс мер, направленных на сокращение теплопотребления и улучшения энергоэффективности зданий.

Утепление ограждающих конструкций

Данное мероприятие можно разделить на несколько важных видов работ.

    Утепление наружных стен с внешней стороны дома.

    Термоизоляция ограждающих конструкций представляет собой нанесение на стены дополнительного слоя материала с низким коэффициентом теплопроводности. Данные мероприятия позволяют устранить «мостики холода», повышают теплоизоляционные свойства стен, эффективно решают проблему «пористости материала». Могут быть применены следующие технологии утепления стен: бесшовная система утепления; создание утепляющей стены; обустройство вентилируемого фасада.

    Утепление крыши, чердачных перекрытий.

    Если чердак дома не отапливаемый, то проводятся работы по утеплению перекрытия под чердаком с защитой изоляционного слоя от механических повреждений.

  1. Термоизоляция перекрытий над подвалом.
  2. Данный вид работ осуществляется со стороны подвала путем приклеивания теплоизоляционных плит к перекрытию.

    Совет! Если невозможно провести мероприятия по термоизоляции стен снаружи (памятник архитектуры, сложный рельеф фасада и пр.), то необходимо утеплить наружные стены изнутри здания, посредством укладки пенополистирольных плит под штукатурку или гипсокартон.

    Уменьшение теплопотерь через окна

    По заявлению специалистов, через окна «уходит» до 30% тепла из отапливаемых помещений. Радикальный способ решение данной проблемы – это замена старых деревянных окон на энергосберегающие. Достаточно уменьшить их размер, особенно если вопрос касается окон на лестничных клетках. В большинстве планировок многоквартирных домов предусмотрена избыточная для освещения лестниц площадь оконных проемов, которая является причиной больших теплопотерь.

    Модернизация вентиляционной системы

    Как известно, наиболее распространенным способом организации циркуляции воздуха в помещениях многоквартирных домов является естественная вентиляция. Удаление воздуха производится по вытяжным каналам, расположенным в кухнях и санузлах. Приток свежего воздуха с улицы организован через естественные неплотности в окнах и дверях.

    При замене старых окон на энергоэффективные и герметичные решается проблема теплопотерь, но при этом появляется новая: резкое уменьшение поступления приточного воздуха. Решается данная проблема модернизацией системы вентиляции, а именно, обустройством вентиляции с контролируемым притоком воздуха. На практике это решается установкой приточных клапанов, окон со встроенными гигрозависимыми вентиляторами или установок принудительной подачи приточного воздуха в помещения.

    Реконструкция отопительной системы

    Особенное внимание специалисты уделяют высокому теплопотреблению, которое происходит из-за низкой эффективности морально и технически устаревших систем отопления дома, е изначально спроектированные с избыточным теплопотреблением. Основные проблемы старых систем отопления (СО) можно сформулировать в следующем:

    • Плохая или неправильная гидравлическая балансировка. Данная проблема часто связана с несанкционированным вмешательством жильцов в конструкцию отопительной системы (установка дополнительных секций на радиаторы, замена батарей, трубопровода и пр.)
    • Плохая теплоизоляция труб теплоснабжения или ее полное отсутствие.
    • Конструктивно устаревшие тепловые и распределительные пункты.

    Переоснащение тепловых узлов

    Модернизация данных объектов – это довольно сложный и дорогостоящий процесс. Который включает в себя следующие изменения:

    1. Замена элеваторного узла системы отопления на автоматизированный. В случае подключения дома к тепловой магистрали по независимой схеме, устанавливается автоматизированный индивидуальный теплопункт; при использовании зависимой, применяется схема с насосным подмесом. На зависимо от применяемой схемы, все оборудование должно быть погодозависимым и в автоматическом режиме стабилизировать давление в СО путем регулирования подачи теплоносителя.

    Важно! Замена устаревшего элеваторного узла экономайзером не даст возможности применения терморегуляторов для радиаторов отопления и балансировочных клапанов. Элеватор просто «не потянет» дополнительное гидравлическое сопротивление, которое неизбежно увеличится при использовании данных устройств.

    1. Замена старых теплообменников на энергоэффективные.
    2. Устранение утечек в СО и замена запорной арматуры.

    Балансировка отопительной системы

    К счастью, эффективность данного мероприятия уже не вызывает никакого сомнения. Установка балансировочных клапанов для системы отопления на обратных стояках с ограничением температуры теплоносителя – это обязательное условие грамотной модернизации СО, особенно в домах с большим процентом автономного отопления газовыми котлами.

    Установка приборов индивидуального регулирования

    Установка терморегуляторов с датчиком температуры воздуха на каждой батарее, помимо дополнительного комфорта для жителей данного строения, позволит значительно снизить потребление тепловой энергии. Повысилась температура воздуха через оконные проемы (солнышко пригрело) терморегулятор снизил количество теплоносителя на конкретный отопительный прибор.

    Среди обязательных мер по реконструкции отопительной системы, проводимой в рамках термомодернизации всего дома, можно выделить монтаж общедомового узла учета теплоснабжения и переход к поквартирному учету тепла. Именно такие меры более всего стимулируют жильцов к экономии.

    Термомодернизация многоквартирного дома требует больших финансовых затрат. Но для достижения значимой экономии конечным потребителем (а значит возврат денег и получения прибыли инвесторами энергосервиса), необходимо проведение комплексных мер по уменьшению количества потребляемой тепловой энергии или термомодернизации.

Если вы живете в многоэтажке, то, договорившись с соседями и создав ОСМД (объединение совладельцев многоквартирного дома), можно провести ряд по-настоящему энергоэффективных мероприятий. Если ты живешь в частном доме, то такие мероприятия, понятно, ты можешь провести самостоятельно. Но, в любом случае, решать вопрос нужно на уровне всего дома.

В среднем семья из трех человек, проживающих в квартире 50 м 2 платит за энергоресурсы около 59% от общей суммы коммунальных платежей, из них 32% составляют отопление и горячее водоснабжение, 15% — электроэнергия, 12% — газ. Как можно сэкономить?

Как можно уменьшить затраты на отопление?

  • Если я проживаю в частном доме
  1. Установка твердотопливного или электрического котла — экономия, в зависимости от текущего положения дел, может достигать 50%.
  1. если в доме создано ОСМД, решения принимаются общим собранием в соответствии с уставом ОСМД;
  2. если в доме нет ОСМД, решения принимаются с согласия всех совладельцев многоквартирного дома.
  • На уровне дома
  1. Установка общедомовых приборов учета тепловой и электрической энергии — экономия 15%.
  2. Обустройство индивидуального теплового пункта (погодного регулятора) с системой терморегуляции — экономия 40%.
  3. Переход на электрическое отопление дома — эффект зависит от дополнительных факторов.
  4. Модернизация системы отопления — экономия 25%.
  • На уровне квартиры

Здесь важно понимать, что речь идет об очень условных цифрах. Вполне возможно, например, что установка квартирных счетчиков приведет к увеличению оплаты, если не проведено энергоэффективных мероприятий для всего дома.

  1. Установка квартирного прибора учета тепловой энергии — экономия до 15%.
  2. Установка квартирного прибора учета потребления газа — экономия до 40%.
  3. Установка современных радиаторов отопления — экономия 10%.
  4. Установка терморегуляторов для современных радиаторов отопления — экономия 10-25%.

Экономим тепло. Для этого полезно знать, что:

  1. Тепловой счетчик в квартире, подключенной к централизованному отоплению, позволяет отследить, сколько тепла вы получили, и платить только за это количество.
  2. Термостатический вентиль на радиатор позволит контролировать температуру в доме, квартире или отдельной комнате.
  3. Мощность и теплоотдача отопительного прибора должны соответствовать размеру отапливаемого помещения и его следует выключать, если никого нет дома.
  4. Отопительные приборы и радиаторы более эффективны, если их не закрывать мебелью, тяжелыми шторами, одеждой или декоративными панелями. Иногда снижение теплоотдачи происходит из-за облицовки радиаторов, в связи с чем тепло не может свободно распространятся по помещению. Если облицовка легко снимается, проверь, каким будет теплообмен без нее.
  5. Батареи с гладкой темной поверхностью повышают теплоотдачу. Поэтому очисти радиатор от слоя старой краски и нанеси новый слой более темного оттенка.
  6. Выбирай биометаллические радиаторы. Мы привыкли к чугунным батареям, которые установлены практически во всех домах с центральным отоплением. Но они имеют невысокую теплоотдачу в отличие от радиаторов из алюминия. Однако есть еще один вариант: биометаллические радиаторы. Они отличаются не только высоким теплообменом, но и прослужат намного дольше.
  7. Система "теплый пол" - способ подвести тепло именно туда, где оно больше всего нужно. Например, под рабочий стол или на участок пола, где ходят жильцы.
  8. Перед началом каждого отопительного сезона следует проверять систему. Необходимо устранить воздушные пробки, отремонтировать места возможного протекания, обращая особое внимание на места соединений частей системы. Это позволит избежать прорывов во время эксплуатации системы в холодный период.
  9. Газовую колонку или бойлер, отработавшие 15-20 лет, следует заменить, так как со временем эти устройства теряют эффективность.
  10. Плотные шторы помогают удерживать тепло в доме, но мешают поступлению тепла от радиаторов. Толстый ковер снижает теплопотери через пол.
  11. Модернизация системы вентиляции, а именно рекуперация тепла, - это реальный способ экономии.

Для установки теплового счетчика или погодного регулятора на дом необходимо:

  1. Организовать собрание, на котором принять решение об установке счетчика или регулятора. Для принятия решения нужно: если есть ОСМД, то достаточно 50%+1 голосов, если нет - нужно согласие 100% жильцов дома. Далее составляется смета, выбирается подрядчик, который установит прибор.
  2. Собрать средства. Как правило, подсчитывается общая отапливаемая площадь дома, затем общее количество квадратных метров делится на стоимость счетчика (регулятора) и всех сопутствующих расходов, а затем эта цифра умножается на отапливаемую площадь каждого из жильцов дома. Объективно говоря, выгоднее всего взять кредит в банке, с последующей компенсацией по государственной программе до 40% тела кредита. Тогда вы начнете экономить уже сейчас.
  3. Обратиться с заявлением в организацию, которая имеет право на установку домовых счетчиков тепла и погодных регуляторов (это задача уполномоченных собранием лиц). Технические условия для установки предоставляет теплоснабжающая организация.
  4. Разработать индивидуальный проект и согласовать рабочий проект у теплопоставщика и в Энергонадзоре (это зона ответственности подрядчика на установку счетчика). Подрядчик также рекомендует тип счетчика и регулятора тепла. На этом этапе нужно выбрать модель счетчика. Счетчик может быть механическим (самый дешевый), ультразвуковым (точный) или магнитным.
  5. Выделить в подвале дома помещение, где устанавливается оборудование.
  6. Организовать встречу представителей от дома, теплопоставщика и подрядчика по монтажу счетчика или регулятора. Подрядчик проводит пусконаладочные работы, а теплопоставщик пломбирует счетчик.
  7. Составить договор на расчет за тепло на основе данных счетчика с теплопоставщиком (например, в Харькове это коммунальное предприятие "Харьковские тепловые сети"). Дом рассчитывает процент стоимости потребленного тепла для каждой квартиры в зависимости от ее площади. Принимается во внимание наличие индивидуальных счетчиков тепла в квартирах.
  8. Каждый жилец имеет право установить свой прибор учета тепла (квартирный счетчик) независимо от того, есть ли тепловой счетчик на дом. Но обратите внимание, что не в каждом многоквартирном доме есть техническая возможность установки счетчиков тепла на каждую квартиру (зависит от системы разводки труб отопления).

Фото в тексте: Изображение используется по лицензии Shutterstock.com

Во многих загородных частных домах, в деревнях и дачных поселках используются старые системы автономного отопления. Можно вкратце обозначить четыре этапа эволюции систем частного отопления в нашей стране следующим образом:

1. Наиболее дешевое, запрещенное в данный момент для жилых зданий паровое отопление.
2. Более эффективные гравитационные системы водяного отопления открытого типа.
3. Появление в продаже экспанзоматов (закрытых мембранных баков), что позволило перейти на системы водяного отопления закрытого типа.
4. Использование циркуляционного насоса. Наиболее эффективный и распространенный сейчас вид: водяное отопление закрытого типа с принудительной циркуляцией теплоносителя (с экспанзоматом и циркуляционным насосом).

Паровые системы уже практически не встречаются. В данном случае мы говорим о гравитационных системах открытого типа в частных домах, которые монтировались в те годы, когда в продаже еще не было циркуляционных насосов и экспанзоматов. Такие старые системы отопления обычно создавались по минимуму, в условиях недостатка средств и отсутствия всех необходимых комплектующих в продаже из-за банального дефицита всего в советское время. В них применяются отечественные котлы отопления минимальной мощности. В сильный мороз этой мощности бывает недостаточно, чтобы поддерживать в доме температуру оптимального комфорта, 21 градус Цельсия.

Небольшая модернизация старой системы отопления может значительно улучшить её характеристики. Для этого достаточно гравитационную отопительную систему, где вода движется за счет разницы плотности теплой воды в котле и менее теплой в радиаторах отопления, превратить в систему с принудительной циркуляцией.

Эту задачу решает установка циркуляционного насоса на выходную трубу (верхнюю), соединяющую котел отопления с радиаторами. Сейчас в продаже имеется большое количество циркуляционных насосов разных производителей. Например, дешевые циркуляционные насосы ЦВЦ для отопления отечественного производства.

Для монтажа лучше пригласить профессионала с опытом работы, но если чешутся руки и есть какой-то опыт работы с сантехникой, можно попробовать выполнить установку циркуляционного насоса своими руками. Аналогичный апгрейд выполняется при замене старых радиаторов отопления, например конвекторов, на новые, биметаллические или чугунные. Старый насос заменяется на новый, обычно чуть большей мощности.

В случае коттеджа большой площади, 400 квадратных метров и более, может возникнуть проблема длинных веток радиаторов на втором этаже. Последние радиаторы в ветке греются слишком слабо. Такую проблему решает добавление второго циркуляционного насоса на втором этаже. Однако в этом случае лучше использовать более дорогие импортные циркуляционные насосы для систем отопления LAING с пониженным уровнем шума или насосы Wilo-Stratos с автоматическим регулированием.

Следует предупредить, что циркуляционный насос - вещь достаточно деликатная. К сожалению, они часто, как говорят сантехники, "примерзают" к трубам так сильно, что сантехник может повиснуть на ключе 4-го номера, но гайка насоса не сдвинется. Нужно быть готовым к такому сюрпризу. Нагревание в таких случаях обычно неэффективно, поэтому желательно иметь при себе керосин или какую-нибудь химию, например специальный спрей, который используют водители для смазывания замков в дверях автомобилей.

Операция действительно сопряжена со сложностями, поэтому опытные сантехники часто решают эту проблему проще. Просто находят клупп под трубу обвязки котла отопления, обычно дюйм с четвертью. Это бывает непросто, так как клуппы такого размера дефицит. Обрезают трубу болгаркой, стараясь выполнить разрез перпендикулярно, и устанавливают циркуляционный насос без замены всей обвязки. При замене обвязки, ее можно выполнить красивыми белыми полипропиленовыми трубами дюйм с четвертью, выглядит очень эффектно. Но непосредственно к котлу должны прикручиваться стальные трубы. Полипропилен к котлу не прикручивают, так как он не очень хорошо переносит температуру выше 90 градусов.

Выполнять эту работу надо вдвоем. Можно и одному, если есть хорошие ключи: упираться коленом в один ключ и двумя руками крутить другой, но это уже сантехническая эквилибристика. Главное, это не повредить сам отопительный котел. Основная аксиома строительства: сумма ущерба не должна превышать стоимость ремонта.

Циркуляционный насос для отопления повышает эффективность всей отопительной системы, при этом заданная температура в доме достигается при меньшей температуре теплоносителя. Поэтому циркуляционный насос еще и уменьшает амортизацию, износ котла отопления. Котел и вся система отопления будут служить дольше.

Поделиться