Основы механизмов горения и взрыва ch4. Теоретические основы механизма взрыва и горения

В основе современных представлений о механизме процесса горения лежат теории самовоспламенения , которые построены на трех видах механизма самовоспламенения: тепловом, автокаталитическитепловом и цепном самоускорении.

Причиной теплового самовоспламенения может быть разогрев реагирующих веществ теплотой реакции.Для этого необходим предварительный разогрев системы и достижение такого состояния, при котором приход тепла в результате реакции станет выше отвода тепла из зоны реакции. При этом условии начнется саморазгон реакции и произойдет самовоспламенение.

Явление, при котором каталитическое действие на реакцию оказывает какой-либо из ее продуктов, называют автокатализом .Особенность этой реакции заключается в том , что она идет при непременной возрастающей концентрации катализатора. Для того,чтобы развивалась автокаталитическая реакция, необходимо либо превращение в конечный продукт, либо существование в начальный момент некоторого количества продукта для реакции в виде начальной «затравки».

Для автокаталитического самовоспламенения характерен более длительный начальный период реакции, в течение которого ее скорость несоизмеримо мала и который далее сменяется периодом быстрого развития химического превращения, однако самоускорение происходит с самого начала реакции.При достижении критической скорости реакции дальнейшее самоускорение будет проходить не только в результате автокатализа, но и повышения температуры.

Цепное самовоспламенение имеет природу, отличную от теплового самовоспламенения. В случае ценных реакцийвыделение тепла происходит в результате разветвления реакционных цепей и накопления химически активных частиц.

К цепным относятся химические процессы, в которых в качестве промежуточных частиц выступают свободные радикалы, или, как их еще называют, активные частицы. Обладая свободными ненасыщенными связями и вступая во взаимодействие с исходными молекулами эти активные частицы вызывают разрыв одной из валентных связей этой молекулы и образуют новую активную частицу. Последняя, в свою очередь, вступает во взаимодействие с новой исходной молекулой, таким образом распространяется реакционная цепь и возникает цепная реакция.

В условиях промышленного производства под взрывом следует понимать быстрое неуправляемое высвобождение энергии, которое вызывает ударную волну, движущуюся на некотором расстоянии от источника.Взрыв может быть вызван :

    детонацией конденсированного ВВ, быстрым сгоранием воспламеняющегося облака газа;

    внезапным разрушением сосуда со сжатым газом или перегретой жидкостью;

    смешиванием перегретых твердых веществ (расплава) с холодными жидкостями и т.д.

Источниками энергии при взрыве могут быть как химические, так и физические процессы.

Источником химического взрыва являются быстропротекающие экзотермические реакции взаимодействия горючих веществ с окислителями или термического разложения нестабильных соединений.

Физические взрывы возникают при смешивании горячей и холодной жидкостей, когда температура одной из них значительно превышает температуру кипения другой (например, при вливании расплавленного металла в воду). Испарение в этом случае протекает взрывным образом.

Способность веществ к взрывному процессу подчиняется законам термохимии , согласно которым, если в данной реакции сумма теплот образования продуктов меньше теплоты образования исходного соединения, то это вещество потенциально взрывоопасно.

Источниками энергии взрывов могут быть окислительно-восстановительные химические реакции, в которых воздух или кислород взаимодействуют с восстановителем. Окислительно-восстановительные реакции в этих условиях могут протекать с достаточно высокими скоростями, при которых генерируются ударные волны, способные вызвать ощутимые разрушения.

Ламинарное, дефлаграционное горение и детонация. Горение и взрыв веществ в разных агрегатных состояниях

В зависимости от скорости распространения пламени горение может быть дефлаграционным со скоростью несколько м/с,взрывным - порядка десятков и сотен м/с идетонационным - тысяч м/с.

При ламинарном горении распространение пламени происходит от каждой точки фронта по нормали к его поверхности, так же, как и распространение сферического пламени при центральном зажигании. Такое горение и скорость перемещения пламени по неподвижной смеси вдоль нормали к его поверхности называетсянормальным .

Скорость горения горючих веществ в смеси с воздухом для предельных углеводородов составляет 0,32-0,4 м/с, для водорода - 2,7 м/с. При столь малых скоростях распространения пламени образование ударной волны перед фронтом пламени не происходит .

При достижении скоростей распространения пламени, составляющих десятки и сотни метров в секунду, но не превышающих скорость распространения звука в данной среде (300-320 м/с), происходит взрывное, или дефлаграционное горение .

При взрывном горении продукты горения могут нагреваться до 1500-3000°С, а давление в закрытых системах увеличивается до 0,6-0,9 мПа. Применительно к случайным промышленным взрывам под дефлеграцией обычно понимают горение облака с видимой скоростью порядка 100-300 м/с, при которой генерируются ударные полны с максимальным давлением 20-100 кПа.

Разрушающее давление (~30кПа) достигается при скорости распространения пламени 150-200 м/с. В определенных условиях дефлаграционное (взрывное) горение может перейти в детонационный процесс , при котором скорость распространения пламени превышает скорость распространения звука и достигает 1-5 км/с. Пиковое давление, создаваемое при детонации, достигает 200 кПа. Большинство промышленных зданий разрушается при давлениях 25-30 кПа при внешних взрывах и 20-25 кПа - при внутренних.

При детонационном режиме горения облака большая часть энергии взрыва переходит в ударную волну ;при дефлаграционном горении переход энергии в ударную волну составляет примерно 30% , максимальный к.п.д. энергии взрыва парогазовых сред составляет примерно 40%.

В зависимости от агрегатного состояния исходного вещества и продуктов горения различают :

    гомогенное горение;

    горение взрывчатых веществ;

    гетерогенное горение.

При гомогенном горении исходные вещества и продукты горения находятся в одинаковом агрегатном состоянии.К этому типу относится горение газовых смесей (природного газа с окислителем - обычно кислородом воздуха),горение негазифицирующихся конденсированных веществ (например, термитов - смесей алюминия с оксидами различных металлов), а такжеизотермическое горение - распространение цепной разветвленной реакции в газовой смеси без значительного разогрева.

Горение взрывчатых веществ связано с переходом вещества из конденсированного состояния в газ. При этом на поверхности раздела фаз происходит сложный физико-химический процесс, при котором в результате химической реакции выделяются теплота и горючие газы, догорающие в зоне горения на некотором расстоянии от поверхности.

При гетерогенном горении исходные вещества находятся в разных агрегатных состояниях. Важнейшие технологические процессы гетерогенного горения - горение угля, металлов, сжигания жидких топлив и т.д. Процесс гетерогенного горения очень сложен, химическое превращение сопровождается дроблением горючего вещества и переходом его в газовую фазу в виде капель частиц, образованием оксидных пленок на частицах металла, турбулизацией и т.д.

Горение - сложный химический процесс, основой которого является окислительная реакция, протекающая в условиях прогрессивного самоускорения, связанного с накоплением в системе тепла.

Отличительные признаки горения - выделение тепла, саморазогрев и свечение веществ при их химическом превращении.

Физическое состояние веществ и физические процессы оказывают большое влияние на скорость и последовательность протекания реакции при окислении веществ, а также на состав продуктов сгорания.

Например: при недостаточном подводе кислорода в зону горения процесс будет протекать медленно, а состав продуктов горения будет отличаться большим содержанием продуктов неполного сгорания, т.е. таких продуктов, которые способны к дальнейшему горению.

При неполном сгорании углеродосодержащих веществ в воздухе образуются двуокись углерода и окись углерода, кроме того в продуктах горения содержатся несгоревшие мелкие частицы углерода, образующие дым.

Газообразный окислитель поступает в зону горения в результате конвекции и диффузии. Исключение составляют случаи, когда окислитель содержится в горючей смеси в количестве, необходимом для реализации процесса горения.

При воздействии внешнего импульса или источника зажигания вещества, содержащие окислитель, практически мгновенно разлагаются и окислитель вступает в реакцию с горючим веществом, которая с большой скоростью распространяется по всему его объему. Реакция сопровождается с выделением большого количества тепла. Горение приобретает форму взрыва.

Окислителем могут служить другие вещества. Например: сера, галогены, сложные кислородосодержащие вещества - перекиси, нитросоединения, азотная кислота, перхлораты.

Однако наиболее часто горение протекает с участием кислорода воздуха (21% О 2 в воздухе) О 2 входит в состав воды и многих минералов. Например, горение твердых веществ в виде аэрозоля может при горении взрываться, а в виде аэрогеля (сплошного массива) может гореть спокойно или тлеть.

Горение различают: тепловое и автокаталитическое.

Тепловое связано с экзотермической реакцией, когда скорость выделения тепла превышает скорость теплопотерь и создаются условия для прогрессивного самоускорения реакции саморазогрева системы и пространственного распространения горения.

Автокаталитический (или цепное) горение происходит при сравнительно низких температурах, например: белый фосфор (горит на воздухе при < 50 С), выделяемая энергия при таком горении расходуется на образование новых реакционно способных промежуточных частиц в еще большем количестве, что способствует ускорению и пространственному распространению реакции.

Наиболее распространено тепловое горение.

Таким образом, чтобы горение возникло, необходима система: горючее вещество, окислитель, источник зажигания или импульс ускоряющий реакцию окисления.

Горючее вещество может быть в газообразном, жидком, твердом состоянии.

Горение газов и паров в воздухе протекает полностью в газовой фазе и носит объемный характер. Горение сопровождается пламенем или взрывом.

Пламя это светящееся пространство, в котором сгорают газы и пары.

Горение в виде взрыва - это горение за короткий промежуток времени.

Горение жидкости - это пламенное горение ее паров и продуктов разложения.

Горение твердых веществ отличается большим разнообразием происходящих процессов. - Это связано с разнообразием химических и физических свойств и состояний (дисперсностью, пористостью, влажностью, однородностью) и состоянием окружающей среды.

Взрыв пыли (торфа, древесины, муки, сахара).

Горение может возникнуть в двух различных формах:

1. Возгорание (воспламенение)

2. Самовозгорание (самовоспламенение)

Возгорание веществ возможно при воздействии теплового импульса от источника зажигания. Величина его должна быть достаточной, чтобы разогреть вещество до температуры, при которой происходит дальнейший саморазогрев и возникает устойчивое горение после удаления источника зажигания.

Температура при возгорании многих органических твердых веществ является температурой воспламенения паро и газообразных продуктов их термического разложения (например у древесины).

Самовозгорание (самовоспламенение) - процесс возникновения горения при отсутствии источника зажигания. Оно наблюдается при резком увеличении скорости экзотермической реакции в объеме вещества, когда скорость выделения тепла больше скорости рассеивания.

Виды самовозгорания:

1). Тепловое (масла, жиры). Масла машин, трансформаторов. Окисление происходит при температуре на воздухе и самовозгореться не способны.

Отработанные минеральные масла подвергавшие нагреву до температур склонных к самовозгоранию (т.к. предельные углеводороды переходят в непредельные).

Склонны к самовозгоранию растительные масла.

2). Микробиологическое:

самовозгорание торфа из-за жизнедеятельности микроорганизмов.

Сено, клевер, листва - сульфиды железа.

3). Химическое: щелочные металлы натрий, калий, при определенных условиях хлор, фтор, бром, йод.

Источники зажигания.

Источники зажигания могут быть для различных веществ разные:

открытый огонь;

тепловое проявление (химическое, микробиологическое происхождение, силы трения);

механические (искры от ударов искрообразующих металлов);

электрические (большие переходные сопротивления, короткое замыкание, электросварка);

природные (молния, грозовые разряды);

носить химическую природу (химические свойства веществ).

Производственные источники зажигания характеризуются воспламеняющей способностью.

В условиях производства существует значительное количество различных источников зажигания, как постоянно действующие (они предусмотрены технологическим регламентом) и потенциально возможные при нарушении технологического процесса.

Условиями необходимыми для предотвращения пожара являются:

1. Исключение окислителя в горючем веществе.

2. Исключение источника зажигания.

3. Исключение горючего вещества.

ТЕМА 4

Суть процесу горіння. Теоретичні основи механізму горіння та вибуху. Класифікація видів горіння. Повне і неповне згорання. Ламінарне і дефлаграційне горіння, вибух і детонація. Гомогенне та гетерогенне горіння.

Горение – химическая реакция окисления вещества,которая сопровождается выделением большого количества тепла и света с прогрессирующим самоускорением.

Условия горения:

1) наличие горючего вещества;

2) наличие окислителя; (O 2, Сl 2 ,F 2 ,Br 2 ,I 2 ,NO,NO 2);

3) наличие источника загорания (импульса).

Условия образования пламени – наличие образования смеси, в которой может протекать химическая реакция. При этом, количество тепла, выделяющегося при горении единицы веса горючего должно быть достаточным для существенного повышения температуры реагентов по сравнению с продуктами сгорания. Скорость химической реакции, т.е. количество вещества, реагирующего в единице объема в единицу времени, сильно возрастает с температурой, поэтому, при этих условиях наблюдается самоускорение реакции.

Горючее вещество – твердое, жидкое, газообразное вещество, способное гореть под действием огня. С уменьшением концентрации кислорода в воздухе уменьшается интенсивность горения. Однако, сжатый ацетилен, хлористый азот, озон горят и без доступа воздуха.

Горение происходит в движущей среде. Это движение может быть следствием самого процесса горения (свеча) или по принудительным причинам (газовая турбина).

Ламинарное горение – соседние слои жидкости равномерно скользят друг по другу.

Скорость движения пламени относительно исходной смеси зависит от природы от природы химической реакции и теплопроводимости газа. Процесс горения, при котором начальное и конечное состояние характеризуется точками A и B называется нормальным или дефлаграционным. Скорость распространения пламени при этом – несколько метров в секунду.

Взрывное горение – скорость распространения пламени достигает порядка десяти метров в секунду.

Взрыв – это горение вещества, сопровождающееся крайне быстрым выделением большого количества энергии, вызывающего нагрев продуктов сгорания до высоких температур и резкое повышение давления.

Детонационное горение – скорость горение до 1000 м/c – импульс воспламенения передается от слоя к слою смеси не за счет теплопроводимости, а вследствие импульса давления.

В зависимости от свойств горючей смеси горение может быть гомогенным и гетерогенным. Если исходные вещества имеют одно агрегатное состояние (горение газов), то горение называют гомогенным .

Пожарная опасность различных веществ и материалов оценивается их способностью вызвать пожар и взрыв. Пожароопасными называют вещества, которые имеют повышенную пожарную опасность. Опасность возникновения взрыва и пожара в помещениях, где выделяются пары и газы горючих веществ и пыли, зависит от их концентрации в воздухе.


Если в воздухе возникает такая концентрация пыли, паров или газов, которая будет выше нижней границы воспламенения, то при наявности открытого источника огня произойдет взрыв, а за пределами верхней границы возгорания – будет горение.

Нижней и верхней границей взрыва называют соответственно наименьшую и наибольшую концентрацию паров, газов или пыли в воздухе, при которых существует вероятность взрыва смеси. Согласно ГОСТ 12.1.004 - 85 пожарная опасность веществ характеризуется их горючестью, возгоранием и взрывоопасностью.

Пожароопастносные вещества имеют такие обозначения:

НГ – негорючие вещества. Это такие вещества, которые не способны гореть в атмосфере воздуха обычного состава.

ТГ – тяжелогорючее вещество. Может гореть лишь под действием постороннего источника возгорания, но не способное самостоятельно гореть после его удаления.

ГВ – горючая жидкость. Это жидкость, которая горит самостоятельно после удаления источника возгорания. Температура вспышки выше 61 0 С в закрытом тигле или 66 0 С в открытом.

ЛВЖ – легковоспламеняющиеся жидкости. Самостоятельно горит после удаления источника возгорания с температурой вспышки не выше 61 0 С в закрытом тигле или 66 0 С – в открытом.

ГГ – горючий газ, который способен образовывать с воздухом воспламеняющиеся и взрывоопасные смеси при температуре не выше 55 0 С.

ВВ – взрывоопасное вещество, способное взрываться или детонировать без присутствия кислорода (О 3 , СНºСН, хлористый азот). Это могут быть также металлы, способные гореть в атмосфере хлора, парах серы или двуокиси углерода.

Пределы воспламенения паров ЛВЖ и ГЖ выражают температурными пределами. При этом нижнему и верхнему температурным пределам соответствуют нижний (НПВ) и верхний (ВПВ) концентрационный предел, выражаемый в объемных процентах.

Наиболее опасны жидкости с температурой вспышки не менее 15 0 С и широкими пределами воспламенение (сероуглерод имеет: Т всп = -43 0 С; НВП = 1 %; ВПВ = 50 %).

Одной из назначенных форм загорания, по причине, которой возникает процесс горения, является вспышка. Вспышка – быстротекущий процесс сгорания паров горючей жидкости, который происходит при их контакте с открытым источником огня. Воспламенение длительный процесс горения, возникающий от источника огня и длиться до тех пор, пока существует выделения паров из горючего вещества. Воспламенения происходит при температурах, которые больше температуры вспышки для ЛВЖ на 2…5 0 С, а для горючих на 5…30 0 С.

Класифікація рідин, що горять, на легкозаймисті (ЛЗР) і на горючі рідини (ГР) за температурою спалаху.

Классификация горючих веществ по взрыво- и пожароопасности:

– взрыво-пожароопасные: ГГ, нижний предел взрываемости которых 10% и менее к объему воздуха; жидкости с температурой вспышки паров до 28 0 С включительно при условии, что указанные выше газы и жидкости могут образовать взрывоопасные смеси в объеме, превышающем 5 % объема помещения; вещества, способные взрываться и гореть при взаимодействии с водой, кислородом воздуха или друг с другом;

– ГГ, нижний предел взрываемости которых более 10 % к объему воздуха, жидкости с температурой вспышки паров от 28 0 С до 61 0 С включительно; жидкости, нагретые до температуры вспышки и выше; горючие пыли и волокна, нижний предел взрываемости которых 65 г/м 3 и менее к объему воздуха;

– пожароопасные: жидкости с температурой вспышки паров свыше 61 0 С, горючие пыли или волокна, нижний предел взрываемости которых более 65 г/м 3 к объему воздуха; вещества, способные гореть при взаимодействии с водой, кислородом воздуха или друг с другом, твердые сгораемые вещества и материалы.

– несгораемые вещества и материалы в горячем раскаленном или расплавленном состоянии, процесс обработки которых сопровождается выделением лучистого тепла, искр и пламени;

– взрывоопасные: горючие газы без жидкой фазы и взрывоопасной пыли в таком количестве, что они могут образовать взрывоопасные смеси в объеме, превышающем 5 % объема помещения, и в котором по условиям техпроцесса возможен только взрыв (без последующего горения); вещества, способные (без последующего горения) при взаимодействии с водой, кислородом воздуха или друг с другом.

Взрывоопасность взвешенной горючей пыли можно охарактеризовать следующими параметрами:

– НПВ, г/м 3 ;

– температура самовоспламенения;

– температура среды;

– минимальной энергией поджигания;

– наличием (концентрацией) негорючей пыли;

– влажность воздуха;

– дисперсность самой пыли.

Самовоспламенение – процесс горения вещества, который возникает от окружающей температуры, но без контакта с открытым источником огня. Например, самовоспламенение горючих смесей от их сдавливания, когда температура смеси достигает определенного уровня.

Самовозгорание – процесс горения,который возникает от тепла, которое накопилось в веществе вследствие биологических или физико-химических процессов.

Система попередження пожеж. Система пожежного захисту. Система організаційно-технічних заходів.

Горение - сложный химический процесс, основой которого является окислительная реакция, протекающая в условиях прогрессивного самоускорения, связанного с накоплением в системе тепла.

Отличительные признаки горения - выделение тепла, саморазогрев и свечение веществ при их химическом превращении.

Физическое состояние веществ и физические процессы оказывают большое влияние на скорость и последовательность протекания реакции при окислении веществ, а также на состав продуктов сгорания.

Например: при недостаточном подводе кислорода в зону горения процесс будет протекать медленно, а состав продуктов горения будет отличаться большим содержанием продуктов неполного сгорания, т.е. таких продуктов, которые способны к дальнейшему горению.

При неполном сгорании углеродосодержащих веществ в воздухе образуются двуокись углерода и окись углерода, кроме того в продуктах горения содержатся несгоревшие мелкие частицы углерода, образующие дым.

Газообразный окислитель поступает в зону горения в результате конвекции и диффузии. Исключение составляют случаи, когда окислитель содержится в горючей смеси в количестве, необходимом для реализации процесса горения.

При воздействии внешнего импульса или источника зажигания вещества, содержащие окислитель, практически мгновенно разлагаются и окислитель вступает в реакцию с горючим веществом, которая с большой скоростью распространяется по всему его объему. Реакция сопровождается с выделением большого количества тепла. Горение приобретает форму взрыва.

Окислителем могут служить другие вещества. Например: сера, галогены, сложные кислородосодержащие вещества - перекиси, нитросоединения, азотная кислота, перхлораты.

Однако наиболее часто горение протекает с участием кислорода воздуха (21% О 2 в воздухе) О 2 входит в состав воды и многих минералов. Например, горение твердых веществ в виде аэрозоля может при горении взрываться, а в виде аэрогеля (сплошного массива) может гореть спокойно или тлеть.

Горение различают: тепловое и автокаталитическое.

Тепловое связано с экзотермической реакцией, когда скорость выделения тепла превышает скорость теплопотерь и создаются условия для прогрессивного самоускорения реакции саморазогрева системы и пространственного распространения горения.

Автокаталитический (или цепное) горение происходит при сравнительно низких температурах, например: белый фосфор (горит на воздухе при < 50 С), выделяемая энергия при таком горении расходуется на образование новых реакционно способных промежуточных частиц в еще большем количестве, что способствует ускорению и пространственному распространению реакции.


Наиболее распространено тепловое горение.

Таким образом, чтобы горение возникло, необходима система: горючее вещество, окислитель, источник зажигания или импульс ускоряющий реакцию окисления.

Горючее вещество может быть в газообразном, жидком, твердом состоянии.

Горение газов и паров в воздухе протекает полностью в газовой фазе и носит объемный характер. Горение сопровождается пламенем или взрывом.

Пламя это светящееся пространство, в котором сгорают газы и пары.

Горение в виде взрыва - это горение за короткий промежуток времени.

Горение жидкости - это пламенное горение ее паров и продуктов разложения.

Горение твердых веществ отличается большим разнообразием происходящих процессов. - Это связано с разнообразием химических и физических свойств и состояний (дисперсностью, пористостью, влажностью, однородностью) и состоянием окружающей среды.

Взрыв пыли (торфа, древесины, муки, сахара).

Горение может возникнуть в двух различных формах:

1. Возгорание (воспламенение)

2. Самовозгорание (самовоспламенение)

Возгорание веществ возможно при воздействии теплового импульса от источника зажигания. Величина его должна быть достаточной, чтобы разогреть вещество до температуры, при которой происходит дальнейший саморазогрев и возникает устойчивое горение после удаления источника зажигания.

Температура при возгорании многих органических твердых веществ является температурой воспламенения паро и газообразных продуктов их термического разложения (например у древесины).

Самовозгорание (самовоспламенение) - процесс возникновения горения при отсутствии источника зажигания. Оно наблюдается при резком увеличении скорости экзотермической реакции в объеме вещества, когда скорость выделения тепла больше скорости рассеивания.

Виды самовозгорания:

1). Тепловое (масла, жиры). Масла машин, трансформаторов. Окисление происходит при температуре на воздухе и самовозгореться не способны.

Отработанные минеральные масла подвергавшие нагреву до температур склонных к самовозгоранию (т.к. предельные углеводороды переходят в непредельные).

Склонны к самовозгоранию растительные масла.

2). Микробиологическое:

самовозгорание торфа из-за жизнедеятельности микроорганизмов.

Сено, клевер, листва - сульфиды железа.

3). Химическое: щелочные металлы натрий, калий, при определенных условиях хлор, фтор, бром, йод.

Источники зажигания.

Источники зажигания могут быть для различных веществ разные: открытый огонь; тепловое проявление (химическое, микробиологическое происхождение, силы трения); механические (искры от ударов искрообразующих металлов); электрические (большие переходные сопротивления, короткое замыкание, электросварка); природные (молния, грозовые разряды); носить химическую природу (химические свойства веществ).

Производственные источники зажигания характеризуются воспламеняющей способностью.

В условиях производства существует значительное количество различных источников зажигания, как постоянно действующие (они предусмотрены технологическим регламентом) и потенциально возможные при нарушении технологического процесса.

Условиями необходимыми для предотвращения пожара являются: 1. Исключение окислителя в горючем веществе. 2. Исключение источника зажигания. 3. Исключение горючего вещества.

В наиболее общей формулировке горение представляет собой быстро протекающую физико-химическую реакцию с выделением тепла и света. В природе и в технике чаще всего наблюдаются процессы горения, связанные с окислением горючих веществ кислородом воздуха. Однако многие вещества вступают между собой в реакцию горения и при отсутствии кислорода. Так, водород и некоторые металлы горят в газообразном хлоре, медь - в парах серы, алюминий в броме и т. п.

Наряду с реакциями горения, протекающими в результате химического соединения различных веществ, происходят реакции горения, связанные с разложением газов, жидкостей и твердых веществ (ацетилен, нитроглицерин, нитроклетчатка, азид свинца и др.).

Разновидностью горения является взрыв и детонация, когда реакция соединения или разложения веществ протекает со скоростью сотен и даже тысяч метров в секунду.

Различают твердые, жидкие и газообразные (парообразные) горючие вещества. Твердые и жидкие вещества могут находиться в воздухе во взвешенном состоянии (в виде пыли или тумана).

Горение возможно лишь при определенных условиях: наличие горючего вещества и вещества, поддерживающего процесс горения, и достаточный их нагрев. Начавшееся горение может продолжаться только при условии, если количество тепла, выделяющегося при горении, превышает теплоотдачу в окружающую среду. К горению относят также взрыв и детонацию.

Продуктами горения при полном сгорании веществ являются негорючие газы и вода. При неполном сгорании в продуктах горения содержатся окись углерода и другие горючие соединения.

Следует отметить, что тяжелые несчастные случаи при пожарах нередко происходят из-за чрезмерной задымленности и наличия окиси углерода в зоне пожара.

В процессе горения выделяется большое количество тепла, которое определяется теплотой сгорания горючих веществ. Отдача тепла в окружающую среду во время пожара происходит конвекцией и главным образом излучением. Температура горения зависит в основном от теплоты сгорания горючих веществ и от количества образующихся продуктов горения.

Горючие вещества могут воспламеняться при непосредственном контакте с высоконагретыми телами или с открытым пламенем, при нагревании излучением, а также при протекании в горючем веществе экзотермических реакций.

Окислительный процесс горения включает фазы предварительного нагрева, окисления, самовоспламенения и последующего горения. На рисунке 1 приведена кривая изменения температур процесса горения во времени. При нагревании горючего вещества с начальной температурой t н до темпратуры начала окисления t о наблюдается медленное повышение температуры, поскольку подводимое извне тепло расходуется на плавление, испарение или разложение горючих веществ. После нагрева горючего вещества до t о нарастание температуры горения во времени происходит быстрее в связи с выделением тепла при начавшейся реакции окисления.

Рисунок 1. – Изменение температуры во времени при нагревании горючих веществ

Однако температура t о еще недостаточна для дальнейшего саморазогревания, так как теплоотдача в окружающую среду превышает образование тепла при начавшейся реакции окисления. По достижении температуры самовоспламенения t c наступает равновесие между приходом тепла к горючему веществу и теплоотдачей в окружающую среду. В результате происходит дальнейший быстрый подъем температуры. При температуре t п появляется пламя и начинается устойчивый процесс горения t г.

Кривая зависимости температуры от времени при пожаре приведена на рисунке 2.

Рисунок 2. – Зависимость температуры от времени при пожаре

Горение является весьма сложным физико-химическим процессом. По современным представлениям, в процессе горения возникают малоустойчивые, но весьма активные промежуточные продукты в виде свободных атомов, перекисей, радикалов. Реакционная способность кислорода значительно увеличивается при нагревании.

Температура самовоспламенения горючих веществ колеблется в широких пределах не только для различных веществ, но и для одного и того же вещества. Эта температура зависит от многих переменных факторов: концентрации смеси, давления, объема сосуда (для газо- паро- и пылевоздушных смесей), измельченное™ (для твердых горючих веществ). В таблице 1 приведены пределы колебания температуры самовоспламенения некоторых горючих веществ.



Таблица 1. Температура самовоспламенения некоторых горючих веществ

Взрывы смесей горючих газов, паров и пыли с воздухом могут происходить только при условии предварительного смешивания их горючих составляющих с кислородом воздуха. Для различных газов, паров и пыли существуют определенные границы взрывоопасных концентраций, являющиеся нижним и верхним пределами взрывоопасной смеси. При содержании горючих составляющих в смеси менее нижнего предела смесь не взрывается и не горит, а при содержании горючих веществ более верхнего предела смесь не взрывается, но горит и, следовательно, является пожароопасной.

Чем меньше нижний предел взрывной концентрации, тем опаснее горючее вещество. Взрывоопасность смесей определяется также интервалом между нижним и верхним пределами смеси. Чем больше этот интервал, тем опаснее взрывная смесь. Так, у ацетилена (С 2 Н 2) нижний предел взрываемости смеси с воздухом (в объемных процентах) равен 2,6%, а верхний 82%. У метана (СН 4) эти значения соответственно составляют 5,3 и 14%. Следовательно, взрывоопасность ацетилена значительно больше взрывоопасности метана.

Температура при взрыве смесей газов и паров колеблется в широких пределах и составляет 1500-3000 °С, а развиваемое при взрыве давление обычно не превышает 1,1 мн/м 2 (11 атм). Однако при увеличении содержания кислорода в смеси и при сжатии смеси во время взрыва (например, в газопроводах -большой длины) давление взрыва может сильно возрасти и даже перейти в детонацию, когда скорость распространения пламени достигает 1000-4000 м/сек, а давление составляет 8 Мн/м 2 (80 атм) и более.

Пожарная опасность твердых горючих веществ

Пожарная опасность твердых веществ определяется их составом и в значительной степени зависит от удельной поверхности этих веществ. Так, бумага в рулонах горит очень медленно, между тем как горение развернутой бумаги происходит весьма быстро. .При повышении влажности твердых веществ значительно уменьшается их воспламеняемость и скорость горения. Скорость горения твердых веществ зависит также от количества летучих продуктов, выделяющихся при разложении веществ во время горения; с увеличением летучих составляющих возрастает и скорость горения.

При горении твердых веществ наблюдаются процессы пламенного и беспламенного горения. При беспламенном горении окисление горючего вещества происходит в поверхностном слое. Одним из основных горючих газов при гашении веществ, содержащих углерод, является окись углерода.

Щелочные металлы начинают гореть после их расплавления (некоторые из них образуют пламя при взаимодействии с водой). Горение алюминия, магния и кальция сопровождается образованием значительного количества белого дыма, состоящего из окислов этих металлов. Процесс горения щелочных металлов значительно интенсифицируется при их измельчении. Так, стружка магния и магниевых сплавов (например, электрон) горит весьма интенсивно. Пыль этих металлов в состоянии аэрогеля (в виде отложений) горит медленно, однако, будучи приведена во взвешенное состояние, она взрывается.

Горение древесины - сложный процесс. При повышении температуры древесины до 110-130 °С выделяется вода, а затем начинается разложение древесины. Продукты разложения в пределах 130-200 °С состоят из паров воды и углекислого газа. При дальнейшем повышении температуры в составе выделяющихся газов появляется окись углерода, водород, метан и другие горючие газы. При 230-250 °С продукты разложения древесины воспламеняются от постороннего источника тепла, после чего древесина продолжает гореть. При 300 °С из древесины выделяется максимальное количество горючих газов.

Фаза пламенного горения древесины постепенно, по мере образования на ее поверхности слоя угля, уменьшается и наступает фаза беспламенного горения этого угля. После выгорания слоя угля вновь интенсивно выделяются горючие газы и появляется пламя. Затем образуется новый слой угля и наступает фаза беспламенного горения и т. д.

По окончании ряда циклов пламенного и беспламенного горения, когда вся древесина разложилась, происходит горение остатков древесного угля без выделения пламени.
Следует отметить, что при длительном нагревании древесины в последней возникают процессы разложения и окисления, что может снизить температуру воспламенения древесины до 110-130 °С.

Пожарная опасность жидких горючих веществ

Пожарная опасность горючих жидкостей определяется температурой вспышки паров испаряющейся жидкости при (внесении источника тепла. Температура вспышки представляет собой наименьшую температуру, при которой пары горючего вещества создают над его поверхностью паровоздушную смесь, воспламеняющуюся при внесении источника тепла (например, открытого огня).

За время вспышки поверхность горючей жидкости не прогревается до температуры, достаточной для интенсивного испарения жидкости, и дальнейшее горение прекращается. Если температура жидкости в момент вспышки окажется достаточной для того, чтобы вслед за вспышкой последовало горение, то такую температуру называют температурой воспламенения горючей жидкости.

Чем ниже температура вспышки горючей жидкости, тем больше пожарная опасность По существующей классификации все горючие жидкости разделяются на два класса. К I классу относятся жидкости с температурой вспышки менее 45°С (например, бензин, спирт, эфир, керосин и др.), а ко II классу-жидкости с температурой вспышки более 45 0 С (например, масла, мазуты и др.). Огнеопасные жидкости I класса относят к легковоспламеняющимся жидкостям, а жидкости II класса - к горючим.

Следует отметить, что пожарная опасность ряда твердых веществ (например, нафталин, фосфор, камфора и др., которые испаряются при нормальной температуре) также характеризуется температурой вспышки.

У легковоспламеняющихся жидкостей небольшая (1-2°С) разница между температурой вспышки паров и температурой воспламенения. У горючих жидкостей эта разница достигает 30 0 С и более.

Пожарная опасность жидкостей увеличивается с понижением температуры вспышки, температуры воспламенения и самовоспламенения, а также с увеличением скорости испарения и уменьшением нижнего предела концентрации взрывоопасной смеси паров жидкости с воздухом.

Пожарная опасность пыли

Пыль горючих веществ в состоянии аэрогеля (в виде отложений пыли) может тлеть и гореть, а находясь в форме аэрозоля, т. е. будучи взвешенной в воздухе, она способна взрываться, образуя взрывоопасные пылевоздушные смеси. Горению пыли в значительной мере способствует адсорбция пылью кислорода воздуха. Взрывоопасность пыли повышается с уменьшением частиц пыли вследствие увеличения ее удельной поверхности. Температура самовоспламенения горючей пыли обычно колеблется в пределах 700-900°С, но некоторые виды пыли имеют относительно низкую температуру самовоспламенения (например, сажа взрывается при 360 °С).

Аналогично горючим газам и парам у пыли существует нижний и верхний пределы взрывоопасной концентрации. Нижний предел взрывной концентрации (источник тепла - раскаленное тело) для серной пыли составляет 7, сахарной 10,3, алюминиевой 7 и каменноугольной 17,2 г/м 3 .

Пределы взрывоопасной концентрации пыли зависят от влажности, дисперсности, температуры и мощности источника тепла и других факторов. Развиваемое при взрывах пыли давление обычно не превышает 0,4-0,6 мн/м 2 (4-6 атм).

Самовозгорание

Некоторые вещества обладают способностью адсорбировать газы и кислород воздуха, вследствие чего увеличивается скорость окислительных реакций и повышается температура этих веществ. Если при этом создаются условия, когда приход тепла будет больше отдачи в окружающую среду, то в результате непрерывного повышения температуры такие вещества могут гореть. Процесс, при котором горение (веществ происходит в результате самонагревания, называется самовозгоранием. Ясно, что вещества, у которых процесс самовозгорания начинается при низкой температуре, представляют повышенную пожарную опасность.

Вещества, способные к самовозгоранию, разделяют на несколько групп. К I группе относятся вещества растительного происхождения, например влажное зерно, сено, опилки. Причиной повышения температуры для них являются биологические процессы; в дальнейшем повышение температуры происходит вследствие окисления, что приводит к самовозгоранию таких веществ.

Ко II группе относят каменные и бурые углы (кроме тощих углей) и торф. Самовозгоранию торфа способствуют протекающие в нем биологические процессы. Торф самовозгорается при относительно невысокой температуре (120- 140°С).

К III группе относятся масла и жиры, причем повышенную пожарную опасность представляют масла растительного происхождения (льняное масло и др.), так как они содержат непредельные органические соединения, которые могут окисляться и полимеризоваться. Животные и минеральные масла представляют значительно меньшую пожарную опасность.

Опасность самовозгорания резко возрастает в тех случаях, когда масла попадают на обтирочные материалы и на спецодежду. Образующаяся на поверхности этих материалов пленка масла адсорбирует кислород воздуха, вследствие чего происходит повышение температуры, возможно воспламенение материалов. В практике металлургических заводов известны случаи пожаров из-за самовозгорания замасленных обтирочных материалов и спецодежды.

К IV группе относятся химические вещества и некоторые соединения. К этой группе относятся вещества, способные к самовозгоранию при их контакте с воздухом, например фосфористый водород, кремниевый водород, белый фосфор, арсины, пыль алюминия и цинка, свежеприготовленные древесный уголь и сажа, металлоорганические соединения. Сульфиды железа FeS и Fe 2 S 3 обладают пирофорными свойствами. При соприкосновении этих сульфидов с воздухом температура их повышается настолько высоко, что является источником воспламенения горючих веществ.

Ряд.веществ воспламеняется при соприкосновении с водой, например щелочные металлы, карбиды кальция и щелочных металлов и др. Воспламенение возникает от того, что в результате взаимодействия этих веществ с водой образуются горючие газы, которые воспламеняются вследствие экзотермичности реакций. В сжатом кислороде самовозгораются масла и жиры.

Поделиться