Базовая рабочая программа модуля (дисциплины) «эксплуатация насосных и компрессорных станций. Оптимизация насосных станций систем водоснабжения на уровне районных, квартальных и внутридомовых сетей штейнмиллер олег адольфович Возможности программных решен

Размер: px

Начинать показ со страницы:

Транскрипт

1 УТВЕРЖДАЮ Проректор по учебной работе С.А. Болдырев 0 г. РАБОЧАЯ ПРОГРАММА дисциплины Насосы и насосные станции (наименование дисциплины в соответствии с учебным планом) Программа переподготовки Институт/Факультет Кафедра Инженерное обеспечение зданий и сооружений Институт инженерной экологии Водоснабжения, водоотведения и гидротехники

2 СОДЕРЖАНИЕ 1. Цели и задачи изучения дисциплины Цель преподавания дисциплины Задачи изучения дисциплины Межпредметная связь Требования к результатам освоения дисциплины Объем дисциплины и виды учебной работы Содержание дисциплины Разделы дисциплины и виды занятий в часах (тематический план занятий) Содержание разделов и тем лекционного курса Практические занятия Лабораторные занятия Самостоятельная работа Учебно-методические материалы по дисциплине Основная и дополнительная литература, информационные ресурсы Перечень наглядных и других пособий, методических указаний и материалов к техническим средствам обучения Контрольно-измерительные материалы... 11

3 1.1. Цель преподавания дисциплины 1. Цели и задачи изучения дисциплины формирования знаний по основным видам насосов, компрессоров, технологического оборудования; формирования навыков по проектированию, строительству и эксплуатации насосных и воздуходувных станций, систем водоснабжения и водоотведения. 1.. Задачи изучения дисциплины подготовка бакалавров к проектно-конструкторской, производственно-технологической, научной деятельности и эксплуатации насосных и воздуходувных станций систем водоснабжения и водоотведения Межпредметная связь Дисциплина «Насосы и насосные станции» относится к вариативной части профессионального цикла. Профиль «Водоснабжение и водоотведение», основная часть. Дисциплина «Насосные и воздуходувные станции» основывается на знаниях, полученных при освоении дисциплин: «Математика», «Физика», «Гидравлика», «Теоретическая механика», «Архитектура», «Черчение», «Сопротивление материалов», «Строительные материалы», «Инженерная геодезия», «Электротехника». Требования к входным знаниям, умениям и компетенциям студентов. Студент должен: Знать: основные исторические события, основы правовой системы, нормативно-технические документы в сфере профессиональной деятельности; фундаментальные законы высшей математики, химии, физики, гидравлики, электротехники, теоретической механики, сопротивления материалов; Уметь: самостоятельно приобретать дополнительные знания по учебной и справочной литературе; применять знания, полученные при изучении предшествующих дисциплин; пользоваться персональным компьютером; Владеть: навыками решения математических задач; графоаналитическими методами исследования; методами постановки и решения инженерных задач. Дисциплины, для которых дисциплина «Насосы и насосные станции» является предшествующей: дисциплины профильной направленности: «Водопроводные сети», «Водоотводящие сети», «Водоподготовка и водозаборные сооружения», «Водоотведение и очистка сточных вод», «Санитарно-техническое оборудование зданий и сооружений», «Теплогазоснабжение с основами теплотехники», «Основы промышленного водоснабжения и водоотведения», «Основы промышленного водоотведения», «Эксплуатация сооружений систем водоснабжения и водоотведения», «Реконструкция сооружений систем водоснабжения и водоотведения».

4 1.4. Требования к результатам освоения дисциплины Процесс изучения дисциплины «Отопление» направлен на формирование следующих компетенций: владением культурой мышления, способностью к обобщению, анализу, восприятию информации, постановки цели и выбору путей её достижения (ОК-1); умением логически верно, аргументировано и ясно строить устную и письменную речь (ОК-); умением использовать нормативные правовые документы в своей деятельности (ОК-5); использовать основные законы естественнонаучных дисциплин в профессиональной деятельности, применять методы математического анализа и моделирования, теоретического и экспериментального исследования (ПК-1); способностью выявить естественнонаучную сущность проблем, возникающих в ходе профессиональной деятельности, привлечь их для решения соответствующий физикоматематический аппарат (ПК-); владением основными методами, способами и средствами получения, хранения, переработки информации, навыками работы с компьютером как средством управления информации (ПК-5); знанием нормативной базы в области инженерных изысканий, принципов проектирования зданий, сооружений, инженерных систем и оборудования, планировки и застройки населённых мест (ПК-9); владением методами проведения инженерных изысканий, технологией проектирования деталей и конструкций в соответствии с техническим заданием с использованием стандартных прикладных расчётных и графических программных пакетов (ПК-10); способностью проводить предварительное технико-экономическое обоснование проектных расчётов, разрабатывать проектную и рабочую техническую документацию, оформлять законченные проектно-конструкторские работы, контролировать соответствие разрабатываемых проектов и технической документации заданию, стандартам, техническим условиям и другим нормативным документам (ПК-11); владением технологией, методами доводки и освоения технологических процессов строительного производства, производства строительных материалов, изделий и конструкций, машин и оборудования (ПК-1); способностью вести подготовку документации по менеджменту качества и типовыми методами контроля качества технологических процессов на производственных участках, организацию рабочих мест, их техническое оснащение, размещение технологического оборудования, осуществлять контроль соблюдения технологической дисциплины и экологической безопасности (ПК-13); знанием научно-технической информации, отечественного и зарубежного опыта по профилю деятельности (ПК-17); владением математическим моделированием на базе стандартных пакетов автоматизации проектирования и исследований, методами постановки и проведения экспериментов по заданным методикам (ПК-18); способностью составлять отчёты по выполненным работам, участвовать во внедрении результатов исследования и практических разработок (ПК-19); знанием правила и технологии монтажа, наладки, испытания и сдачи в эксплуатацию конструкций, инженерных систем и оборудования строительных объектов, образцов продукции, выпускаемой предприятием (ПК-0); владением методами опытной проверки оборудования и средств технологического обеспечения (ПК-1). В результате освоения дисциплины студент должен: Знать: виды и конструкции основного оборудования насосных и воздуходувных станций; виды и конструкции сооружений насосных и воздуходувных станций;

5 основы проектирования и строительства насосных и воздуходувных станций. Уметь: обосновано принимать проектные решения по составу технологического оборудования насосных и воздуходувных станций как элементов системы, для которой заданы требования потребителей по надёжности и условиям подачи воды, воздуха и режимам эксплуатации. Владеть: навыками монтажа, строительства и эксплуатации основного технологического оборудования и сооружений насосных и воздуходувных станций.

6 . Объем дисциплины и виды учебной работы Вид учебной работы Всего зачетных единиц (часов) Общая трудоемкость дисциплины 68 Аудиторные занятия: 40 лекции 0 практические занятия (ПЗ) 0 семинарские занятия (СЗ) - лабораторные работы (ЛР) - другие виды аудиторных занятий - промежуточный контроль тестирование Самостоятельная работа: 8 изучение теоретического курса (ТО) - курсовой проект - расчетно-графические работы (РГР) - реферат 8 задачи - задания другие виды самостоятельной работы - Вид промежуточного контроля (зачет, экзамен) зачёт

7 3. Содержание дисциплины 3.1. Разделы дисциплины и виды занятий в часах (тематический план занятий) п/п Модули и разделы дисциплины Насосы Назначение, принцип действия и области применения насосов различных видов Рабочий процесс лопастных насосов Характеристики работы лопастных насосов, совместная работа насосов и сетей 4. Конструкции насосов, применяемых для водоснабжения и водоотведения Насосные станции Типы насосных станций систем водоснабжения и водоотведения Водопроводные насосные станции Насосные станции систем водоотведения Лекции, зачетных единиц (часов) ПЗ или СЗ, зачетных единиц (часов) ЛР, зачетных единиц (часов) Самост. работа, зачетных единиц (часов) Реализуемые компетенции ПК-1, ПК-5, ПК-9, ПК-10, ПК-11, ПК-1 ПК-13, ПК-17, ПК-18, ПК-19, ПК-0, ПК ПК-1, ПК-5, ПК-9, ПК-10, ПК-11, ПК ПК-13, ПК-17, ПК-18, ПК-19, ПК-0, ПК-1 Итого Содержание разделов и тем лекционного курса темы лекции раздела Содержание лекции Кол-во часов (зач. ед) Самостоятельная работа Основные параметры и классификация Изучение теоретического насосов. Достоинства и недостатки курса. Проработка конспекта 1 насосов различных типов. Схемы лекций. Работа со устройства и принцип действия специальной литературой. лопастных насосов, насосов трения, Подготовка к текущей объёмных насосов. аттестации (КСР). Давление и напор, развиваемый 1 центробежным насосом. Мощность и КПД насоса. То же

8 Кинематика движения жидкости в рабочих органах центробежного насоса. Основное уравнение центробежного насоса. Подобие 1 насосов. Формулы пересчёта и То же коэффициент быстроходности. Высота всасывания насосов. Кавитация в насосах. Допустимые значения высоты всасывания. 4 Характеристики центробежных насосов. Способы получения 1 характеристик. Совместная То же характеристика работы насоса и трубопровода. Испытания насосов. 5 Параллельная и последовательная 1 работа насосов. Конструкции насосов: центробежных, осевых, диагональных, скважинных, вихревых. Объёмные и шнековые насосы. То же 6 Классификация и типы насосных Выполнение письменной станций. Состав оборудования и контрольной работы помещений насосных и воздуходувных (реферат). станций. 7 Специфические особенности водопроводных насосных станций. Изучение теоретического курса. Проработка конспекта Основные конструктивные решения лекций. Работа со зданий насосных станций. Назначение специальной литературой.. и особенности проектирования насосных станций -1-го и -го подъёма. Подготовка к текущей аттестации (КСР Классификация насосных станций систем водоотведения. Схемы устройства, назначение. Особенности проектирования насосных станций систем водоотведения. Определение ёмкости приёмных резервуаров. Размещение насосных агрегатов. Особенности строительства насосных станций систем водоотведения. Эксплуатация воздуходувных и насосных станций. Техникоэкономические показатели работы насосных станций. Итого: 0 Выполнение письменной контрольной работы (реферат) То же То же

9 3.3. Практические занятия п/п раздела дисциплины Наименование практических занятий Объем в часах Назначение и технические характеристики насосов Классификация и характеристики насосов. Рабочая часть 1 1 характеристики насосов. Стабильная и нестабильная характеристики насосов. Пологие, нормальные, крутопадающие характеристики. Определение крутизны характеристики. Совместная работа насосов и трубопроводов Построение совместной характеристики работы насосов и 1 трубопроводов. Графическая характеристика Q-H трубопровода. Построение приведённой характеристики Q-H центробежного насоса. Определение режимной точки работы насоса в системе трубопроводов. Изменение энергетических характеристик центробежного 3 1 насоса при изменении диаметра и частоты вращения рабочего колеса насоса Рабочие поля характеристик Q-H насоса. Формулы пересчёта. 4 1 Определение геометрической высоты всасывания насоса (ч.1) Определение геометрической высоты всасывания насоса при установке насоса выше уровня жидкости в приёмном резервуаре, ниже уровня жидкости в приёмном резервуаре (насос установлен под заливом), в случае, когда жидкость в приёмном резервуаре находится под избыточным давлением. 5 1 Определение геометрической высоты всасывания насоса (ч.) Определение геометрической высоты всасывания насоса с учётом геодезической отметки установки насоса и с учётом температуры перекачиваемой воды. Выбор основного оборудования водопроводных насосных станций 67 Расчёт подачи насосной станции -го подъёма по ступенчатому и интегральному графикам водопотребления. Влияние вместимости 4 напорно-регулирующей ёмкости на режим работы насосной станции. Определение расчётного напора насосной станции и количества рабочих и резервных насосов. 7 Режим работы насосной станции водоотведения Расчёт подачи и напора насосной станции и вместимости приёмного резервуара. Выбор рабочих и резервных агрегатов. Построение графика часового притока и откачки, расчёт частоты включения насосов в зависимости от вместимости приёмного резервуара. Определение отметки оси насоса при условии его 8 бескавитвционной работы Определение отметки оси насоса. Проверка кавитационного запаса. 9 Учебно-ознакомительная экскурсия на насосные станции Итого: 0

10 3.4. Лабораторные занятия п/п раздела дисциплины Наименование лабораторных работ Объем в часах 3.5. Самостоятельная работа Для приобретения студентами практических навыков в выборе гидромеханического специального оборудования и проектирования сооружений для перекачивания вод предусматривается выполнение курсового проекта. Результатом самостоятельной работы является написание реферата. Данный вид работы составляет 8 часов. Организация самостоятельной работы производиться в соответствии с графиком учебного процесса и самостоятельной работы студентов.

11 4. Учебно-методические материалы по дисциплине 4.1. Основная и дополнительная литература, информационные ресурсы а) основная литература 1. Карелин В.Я., Минаев А.В. Насосы и насосные станции. М.: ООО «Бастет», Шевелёв Ф.А., Шевелёв А.Ф. Таблицы для гидравлического расчёта водопроводных труб. М.: ООО «Бастет», Лукиных А.А., Лукиных Н.А. Таблицы для гидравлического расчёта канализационных сетей и дюкеров по формуле акад. Н.Н. Павловского. М.: ООО «Бастет», Проектирование канализационной насосной станции: учебное пособие/б.м. Гришин, М.В.Бикунова, Саранцев В.А., Титов Е.А., Кочергин А.С. Пенза: ПГУАС, 01. б) дополнительная литература 1. Сомов М.А., Журба М.Г. Водоснабжение. М.: Стройиздат, Воронов Ю.В., Яковлев С.Я. Водоотведение и очистка сточных вод. М.: Изд-во АСВ, Справочник строителя. Монтаж систем внешнего водоснабжения и канализации./под ред. А.К.Перешивкина/. М.: Стройиздат, Водоснабжение и водоотведение. Наружные сети и сооружения. Под ред. Репина Б.Н. М.: Изд-во АСВ, 013. в) программное обеспечение 1. пакет электронных тестов 170 вопросов;. электронный курс лекций «Насосные и воздуходувные станции»; 3. Программа AUTOCAD, RAUCAD, MAGICAD; г) базы данных, информационно-справочные и поисковые системы 4. электронные каталоги насосов; 5. образцы типовых проектов насосных станций; 6. поисковые системы: YANDEX, MAIL, GOOGLE и др. 7. Интернет сайты: и др. 4.. Перечень наглядных и других пособий, методических указаний и материалов к техническим средствам обучения Материально техническая база дисциплины включает: лабораторию со стендом для проведения лабораторных работ оснащённую необходимыми контрольно-измерительными приборами, аппаратурой и насосными агрегатами. компьютерный класс для проведения лабораторных работ с использованием имитаторов Контрольно-измерительные материалы Контрольно-измерительные материалы: перечень вопросов к экзамену и экзаменационные билеты. Пример типовых тестовых заданий по дисциплине «Насосы и насосные станции»: 1. Что учитывает коэффициент полезного действия? а) степень надежности работы насоса; б) все виды потерь, связанных с преобразованием насосом механической энергии двигателя в энергию движущейся жидкости; в) потери, обусловленные перетеканием воды через зазоры между корпусом и рабочим колесом. Правильный ответ б.. Что представляет собой напор насоса? а) работу производимую насосом в единицу времени; б) приращение удельной энергии жидкости на участке от входа в насос до выхода из него; в) удельную энергию жидкости на выходе из насоса.

12 Правильный ответ б. 3. Напор насоса измеряется а) в метрах столба перекачиваемой насосом жидкости, м; б) в м 3 /с; в) в м 3. Правильный ответ а. 4. Что называется объемной подачей насоса? а) объем жидкости, подаваемый насосом в единицу времени; б) масса жидкости, перекачиваемая насосом в единицу времени; в) вес перекачиваемой жидкости в единицу времени. Правильный ответ а. 5. Какие насосы относятся к группе динамических? а) центробежные насосы; б) поршневые насосы; в) плунжерные насосы. Правильный ответ а. 6. Какие насосы относятся к группе объемных? а) центробежные; б) вихревые; в) поршневые. Правильный ответ в. 7. Работа каких насосов основана на общем принципе силовом взаимодействии лопастей рабочего колеса с обтекающим их потоком перекачиваемой жидкости? а) диафрагменных; б) поршневых; в) центробежных, осевых, диагональных. Правильный ответ в. 8. Основной рабочий орган центробежного насоса? а) рабочее колесо; б) вал; в) корпус насоса. Правильный ответ а. 9. Под действием какой силы жидкость выбрасывается из рабочего колеса центробежного насоса? а) под действием силы тяжести; б) под действием центробежной силы; в) под действием силы Кариолиса. Правильный ответ б. 10. По компоновке насосного агрегата (расположению вала) центробежные насосы подразделяются а) на одноступенчатые и многоступенчатые; б) с односторонним подводом и двусторонним подводом; в) на горизонтальные и вертикальные. Правильный ответ в.


Направление подготовки РАБОЧАЯ ПРОГРАММА дисциплины Б3.В.ДВ.3. «Насосы и насосные станции» (индекс и наименование дисциплины в соответствии с ФГОС ВПО и учебным планом) 08.03.01 Строительство (шифр и наименование

УТВЕРЖДАЮ Проректор по учебной работе С.А. Болдырев 0 г. РАБОЧАЯ ПРОГРАММА дисциплины Водоснабжение и водоотведение (наименование дисциплины в соответствии с учебным планом) Программа переподготовки Институт/Факультет

УТВЕРЖДАЮ Проректор по учебной работе С.А. Болдырев 20 г. РАБОЧАЯ ПРОГРАММА дисциплины Реконструкция сетей водоснабжения и водоотведения (наименование дисциплины в соответствии с учебным планом) Программа

УТВЕРЖДАЮ Проректор по учебной работе С.А. Болдырев 20 г. РАБОЧАЯ ПРОГРАММА дисциплины Эксплуатация сетей водоснабжения и водоотведения (наименование дисциплины в соответствии с учебным планом) Программа

УТВЕРЖДАЮ Проректор по учебной работе С.А. Болдырев 0 г. РАБОЧАЯ ПРОГРАММА дисциплины Санитарно-техническое оборудование зданий (наименование дисциплины в соответствии с учебным планом) Программа переподготовки

ПРИМЕРНАЯ ПРОГРАММА МОДУЛЯ ИНЖЕНЕРНЫЕ СИСТЕМЫ ЗДАНИЙ И СООРУЖЕНИЙ (ТГВ, ВИВ, ОБЩАЯ ЭЛЕКТРОТЕХНИКА И ЭЛЕКТРОСНАБЖЕНИЕ, И ВЕРТИКАЛЬНЫЙ ТРАНСПОРТ) Рекомендуется для направления подготовки специальности 270800

УТВЕРЖДАЮ Проректор по учебной работе С.А. Болдырев 20 г. РАБОЧАЯ ПРОГРАММА дисциплины Насосы, вентиляторы и компрессоры в системах ТГВ (наименование дисциплины в соответствии с учебным планом) Программа

РАБОЧАЯ ПРОГРАММА дисциплины Б3.В.ДВ.1.2 «Основы водоснабжения и водоотведения населенных пунктов» (индекс и наименование дисциплины в соответствии с ФГОС ВПО и учебным планом) Направление подготовки 08.03.01

УТВЕРЖДАЮ Проректор по учебной работе С.А. Болдырев 0 г. РАБОЧАЯ ПРОГРАММА дисциплины Метрология, стандартизация и сертификация (наименование дисциплины в соответствии с учебным планом) Программа переподготовки

УТВЕРЖДАЮ Проректор по учебной работе С.А. Болдырев 20 г. РАБОЧАЯ ПРОГРАММА дисциплины Теплогазоснабжение и вентиляция (наименование дисциплины в соответствии с учебным планом) Программа переподготовки

УТВЕРЖДАЮ Проректор по учебной работе С.А. Болдырев 20 г. РАБОЧАЯ ПРОГРАММА дисциплины Безопасность зданий и сооружений в сложных природных и природно-техногенных условиях (наименование дисциплины в соответствии

СОДЕРЖАНИЕ 1. Цели и задачи изучения дисциплины... 3 1.1 Цель преподавания дисциплины... 3 1.2 Задачи изучения дисциплины... 3 1.3 Межпредметная связь... 4 2. Объем дисциплины и виды учебной работы...

УТВЕРЖДАЮ Проректор по учебной работе С.А. Болдырев 20 г. РАБОЧАЯ ПРОГРАММА дисциплины Централизованное теплоснабжение (наименование дисциплины в соответствии с учебным планом) Программа переподготовки

УТВЕРЖДАЮ Проректор по учебной работе С.А. Болдырев 20 г. РАБОЧАЯ ПРОГРАММА дисциплины Организация, планирование и управление строительством (наименование дисциплины в соответствии с учебным планом) Программа

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ ДОНЕЦКОЙ НАРОДНОЙ РЕСПУБЛИКИ Государственное образовательное учреждение высшего профессионального образования «ДОНБАССКАЯ НАЦИОНАЛЬНАЯ АКАДЕМИЯ СТРОИТЕЛЬСТВА И АРХИТЕКТУРЫ»

1. Цель второй производственной практики: - ознакомление студентов 3 курса со специальностью «Водоснабжение и водоотведение» на объектах, где эксплуатируются сети, системы и устройства водоснабжения и

РАБОЧАЯ ПРОГРАММА дисциплины Б3.В.ДВ.2.2 «Эксплуатация систем и сооружений водоснабжения и водоотведения» (индекс и наименование дисциплины в соответствии с ФГОС ВПО и учебным планом) Направление подготовки

2 Визирование РПД для исполнения в очередном учебном году Утверждаю: Проректор по УР 2016 г. Рабочая программа пересмотрена, обсуждена и одобрена для исполнения в 2016-2017 учебном году на заседании кафедры

МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «КУБАНСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ»

РАБОЧАЯ ПРОГРАММА дисциплины М2.В.ДВ.2.1 «Проектное дело» (индекс и наименование дисциплины в соответствии с ФГОС ВПО и учебным планом) Направление подготовки 08.04.01 «Строительство» (шифр и наименование

Аннотация УМКД УМКД представляет собой совокупность нормативно-методических документов и учебно-методических материалов, обеспечивающих реализацию ООП в образовательном процессе и способствующих эффективному

М и н и с т е р с т в о о б р а з о в а н и я и н а у к и А с т р а х а н с к о й о б л а с т и Г A О У А О В П О «А с т р а х а н с к и й и н ж е н е р н о - с т р о и т е л ь н ы й и н с т и т у т» РАБОЧАЯ

Направление подготовки РАБОЧАЯ ПРОГРАММА дисциплины Б3.В.ДВ.15.2 «Водопроводные сети» (индекс и наименование дисциплины в соответствии с ФГОС ВПО и учебным планом) 08.03.01 Строительство (шифр и наименование

Цели освоения дисциплины В результате освоения данной дисциплины бакалавр приобретает знания, умения и навыки, обеспечивающие достижение целей Ц, Ц2, Ц4, Ц5 основной образовательной программы «Теплоэнергетика

УТВЕРЖДАЮ Проректор по учебной работе С.А. Болдырев 20 г. РАБОЧАЯ ПРОГРАММА дисциплины Строительная информатика (наименование дисциплины в соответствии с учебным планом) Программа переподготовки Институт/Факультет

Аннотация дисциплины «Основы гидравлики и теплотехники» 1. Цель дисциплины Дисциплина «Основы гидравлики и теплотехники» обеспечивает функциональную связь с базовыми дисциплинами и имеет свою цель приобретение

2 1. ЦЕЛИ ОСВОЕНИЯ ДИСЦИПЛИНЫ Целью дисциплины «Теплогазоснабжение и вентиляция» является: освоение основы технической термодинамики и теплопередачи, получение знаний студентами по конструкциям, принципам

РАБОЧАЯ ПРОГРАММА дисциплины М2.В.ОД.4 «Проектирование современных систем вентиляции» (индекс и наименование дисциплины в соответствии с ФГОС ВПО и учебным планом) Направление подготовки 08.04.01 «Строительство»

УТВЕРЖДАЮ Проректор по учебной работе С.А. Болдырев 0 г. РАБОЧАЯ ПРОГРАММА дисциплины Кондиционирование воздуха и холодоснабжение (наименование дисциплины в соответствии с учебным планом) Программа переподготовки

РАБОЧАЯ ПРОГРАММА дисциплины Б2.В.ДВ.2.1 «Прикладные задачи теоретической механики» (индекс и наименование дисциплины в соответствии с ФГОС ВПО и учебным планом) Направление подготовки 08.03.01 Строительство

РАБОЧАЯ ПРОГРАММА дисциплины Б3.В.ДВ.4.1 «Динамический расчет и обеспечение устойчивости зданий и сооружений при строительстве и эксплуатации» (индекс и наименование дисциплины в соответствии с ФГОС ВПО

Федеральное государственное автономное образовательное учреждение высшего профессионального образования «Сибирский федеральный университет» Инженерно-строительный (наименование института) Инженерных систем

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования УТВЕРЖДАЮ Декан строительного факультета В.А. Пименов..20 Рабочая программа дисциплины АВТОМАТИЗИРОВАННОЕ

2 1. ЦЕЛИ ОСВОЕНИЯ ДИСЦИПЛИНЫ Целью дисциплины «Механика жидкости и газа» является развитие и закрепление у студентов способности самостоятельно выполнять аэродинамические и гидравлические инженерные расчеты

УТВЕРЖДАЮ Проректор по учебной работе С.А. Болдырев 20 г. РАБОЧАЯ ПРОГРАММА дисциплины Инженерная геодезия (наименование дисциплины в соответствии с учебным планом) Программа переподготовки Институт/Факультет

2 1. ЦЕЛИ ОСВОЕНИЯ ДИСЦИПЛИНЫ Целями освоения дисциплины Промбезопасность являются: приобретение студентами знаний в области Промбезопасности опасных производственных объектов. 2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ

Негосударственное образовательное учреждение высшего профессионального образования «Камский институт гуманитарных и инженерных технологий» Факультет «Нефти и газа» Кафедра «Инженерные и технические дисциплины»

Лекция 3 Характеристики насоса. Изменение характеристик насосов. .8. Характеристики насоса Характеристикой насоса называется графически выраженная зависимость основных энергетических показателей от подачи

РАБОЧАЯ ПРОГРАММА дисциплины М2.Б.3 «Методы решения научно-технических задач в строительстве» (индекс и наименование дисциплины в соответствии с ФГОС ВПО и учебным планом) Направление подготовки 08.04.01

ПРИМЕРНАЯ ПРОГРАММА ДИСЦИПЛИНЫ ИНЖЕНЕРНАЯ ГРАФИКА Рекомендуется для направления подготовки специальности 70800 «СТРОИТЕЛЬСТВО» Квалификация (степень) выпускника бакалавр Москва 010 1. Цели и задачи дисциплины:

РАБОЧАЯ ПРОГРАММА дисциплины М1.В.ДВ.1.1 «Планирование и обработка результатов эксперимента» (индекс и наименование дисциплины в соответствии с ФГОС ВПО и учебным планом) Направление подготовки 08.04.01

«УТВЕРЖДАЮ» Заведующий кафедрой ТиО ОМД С.В. Самусев 2016г. АННОТАЦИЯ ДИСЦИПЛИНЫ 1. НАИМЕНОВАНИЕ ДИСЦИПЛИНЫ: «ПРОИЗВОДСТВЕННАЯ ПРАКТИКА» 2. НАПРАВЛЕНИЕ ПОДГОТОВКИ 15.03.02 «ТЕХНОЛОГИЧЕСКИЕ МАШИНЫ И ОБОРУДОВАНИЕ»

2 1. ЦЕЛИ ОСВОЕНИЯ ДИСЦИПЛИНЫ 1. Цели и задачи дисциплины. Целью освоения дисциплины «Основы промышленных производств» являются приобретение студентами знаний о важнейших современных промышленных технологиях

Аннотация рабочей программы дисциплины УЧЕБНАЯ ГЕОДЕЗИЧЕСКАЯ ПРАКТИКА Место дисциплины в учебном плане Б5 Название кафедры Автомобильные дороги Разработчик программы Хоренко О.П. старший преподаватель

УТВЕРЖДАЮ Проректор по учебной работе С.А. Болдырев 0 г. РАБОЧАЯ ПРОГРАММА дисциплины Планирование и организация экспериментальных исследований (наименование дисциплины в соответствии с учебным планом)

Б1 Дисциплины (модули) Б1.Б.1 История 59 ОК-2 ОК-6 ОК-7 Б1.Б.2 Философия 59 ОК-1 ОК-6 Б1.Б.3 Иностранный язык 50 ОК-5 ОК-6 ОПК-9 Б1.Б.4 Правоведение (основы законодательства в) Б1.Б.5 Экономика 17 ОК-3

ПЕРВОЕ ВЫСШЕЕ ТЕХНИЧЕСКОЕ УЧЕБНОЕ ЗАВЕДЕНИЕ РОССИИ МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

1. ЦЕЛИ ОСВОЕНИЯ ДИСЦИПЛИНЫ «НАСОСЫ И ВОЗДУХОДУВНЫЕ СТАНЦИИ» Целью освоения дисциплины «Насосы и воздуходувные станции» является приобретение знаний об основных конструкциях насосов и воздуходувных станций,

1 Общие положения Описание образовательной программы 1.1 Цель, реализуемая ОП ВО Целью образовательной программы академического бакалавриата 08.03.01.04 «Производство и применение строительных материалов,

УТВЕРЖДАЮ Проректор по учебной работе С.А. Болдырев 0 г. РАБОЧАЯ ПРОГРАММА дисциплины Современные конструктивные системы (наименование дисциплины в соответствии с учебным планом) Программа повышения квалификации

Федеральное государственное бюджетное образовательное учреждение высшего образования «Саратовский государственный технический университет имени Гагарина Ю.А.» Кафедра «Транспортное строительство» АННОТАЦИЯ

Программы учебной и производственной практик При реализации данной ОПОП предусматриваются следующие виды практик: Геодезическая Геологическая Ознакомительная Производственная Строительные машины Технологическая

Направление подготовки РАБОЧАЯ ПРОГРАММА дисциплины Б3.В.ОД.6 «Строительная механика» (индекс и наименование дисциплины в соответствии с ФГОС ВПО и учебным планом) 08.03.01 Строительство (шифр и наименование

ПРОГРАММА Наименование дисциплины: «Теплогазоснабжение и вентиляция» Рекомендуется для подготовки направления (специальности) 08.03.01 «Строительство» Квалификация (степень) выпускника в соответствии с

Аннотация к рабочей программе дисциплины «Организация, планирование и управление в строительстве» направление подготовки бакалавров 08.03.01 «Строительство» (профиль «Промышленное и гражданское строительство»)

Развернутый учебный план бакалавриата по направлению 7000. "Строительство" профиль "Автомобильные дороги" (очная форма обучения) п/п Наименование дисциплин (в том числе практик) Зачетные единицы Трудоемкость

ОБЩАЯ ХАРАКТЕРИСТИКА ОСНОВНОЙ ПРОФЕССИОНАЛЬНОЙ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ (ОПОП) Код и наименование направления 08.03.01 Строительство Квалификация, присваиваемая Бакалавр выпускникам Профиль или магистерская

2 Содержание 1. Компетентностная модель выпускника... 4 1.1 Характеристика и виды профессиональной деятельности выпускника... 4 1.1.1 Область профессиональной деятельности выпускников... 4 1.1.2 Объекты

1. Цели и задачи дисциплины: Цель дисциплины: Получение знаний, умений и навыков по построению и чтению проекционных чертежей и чертежей строительных объектов, отвечающих требованиям стандартизации и унификации;

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИ ЙСКОЙ ФЕДЕРАЦИИ Государственное образовательное учреждение высшего профессионального образования «Новосибирский государственный архитектурно-строительный университет

2014-03-15

Внедрение современных систем SCADA в водном хозяйстве предоставляет предприятиям беспрецедентную возможность контроля и управления всеми аспектами получения, подачи и распределения воды из централизованной системы управления. Современные коммунальные предприятия за рубежом признают, что система SCADA не должна состоять из одного или нескольких изолированных «островков автоматизации», а может и должна быть единой системой, работающей в территориально распределенной сети, и интегрированной в информационно-вычислительную систему их предприятия. Следующим логическим шагом после внедрения системы SCADA является более эффективное использование этой инвестиции с применением самого современного программного обеспечения, позволяющего осуществлять управление с упреждением (в отличие от управления по данным обратной связи) системой водоснабжения. Преимущества, полученные в результате этих действий, могут включать повышение качества воды за счет сокращения ее возраста, сведение к минимуму расходов на энергоресурсы и повышение производительности системы без ущерба для эксплуатационной надежности.


Введение

С середины 1970-х годов автоматика вторглась в процессы подготовки, подачи и распределения питьевой воды, традиционно контролируемые ручным способом. До этого времени на большинстве сооружений использовались простые пульты с лампами аварийной сигнализации, циферблатные индикаторы и пультовые дисплеи, такие как самописцы с круглой диаграммой, в качестве устройств, дополняющих систему ручного управления. Позднее появились интеллектуальные приборы и анализаторы, такие как нефелометры, счетчики частиц и измерители pH. Их можно было использовать для управления насосами-дозаторорами химикатов для обеспечения соответствия применяемым стандартам по водоснабжению. В конечном итоге, полностью автоматическое управление с помощью ПЛК или систем распределенного управления появилось за рубежом в начале 1980-х годов. Наряду с совершенствованием технологии улучшались и процессы управления. Примером этого является применение измерителей проточных токов в качестве вторичного контура регулирования, расположенного за потоком внутреннего контура, предназначенных для дозировки коагулянта. Основная проблема заключалась в том, что теория применения индивидуальных измерительных приборов продолжала существовать в промышленности. Системы управления все еще разрабатывались так, как если бы один или несколько физических измерительных приборов были соединены вместе посредством проводов для управления единственной выходной переменной. Основное преимущество ПЛК заключалось при этом в возможности объединения большого объема цифровых и аналоговых данных, а также создания более сложных алгоритмов по сравнению с теми, которые можно получить при объединении отдельных измерительных приборов.

Как следствие, появилась возможность осуществлять, а также пытаться достигать такого же уровня управления в системе распределения воды. Начальные разработки в области оборудования телеметрии сталкивались с проблемами, связанными с низкой скоростью передачи данных, большой задержкой и ненадежностью линий радиосвязи или арендованных линий связи. На сегодняшний день эти проблемы все еще решены не окончательно, однако, в большинстве случаев, они преодолены благодаря применению высоконадежных сетей с коммутацией пакетов данных или ADSL-соединений с территориально распределенной сетью телефонной связи.

Все это связано с большими затратами, однако инвестиции в систему SCADA являются необходимостью для предприятий водоснабжения. В странах Америки, Европы и индустриально развитой Азии мало кто пытается осуществлять управление предприятием, не имея такой системы. Могут возникнуть трудности с предоставлением обоснования окупаемости значительных затрат, связанных с установкой системы SCADA и системы телеметрии, однако, в действительности, альтернатива данному направлению отсутствует.

Сокращение рабочей силы за счет использования централизованного резерва опытных сотрудников для управления широко распределенной системой и возможность контроля и управления качеством являются двумя наиболее распространенными обоснованиями.

Аналогично монтажу ПЛК на сооружениях, создающему основу для обеспечения возможности создания продвинутых алгоритмов, внедрение широко распределенной системы телеметрии и системы SCADA позволяет обеспечить более сложный контроль над распределением воды. В действительности, алгоритмы общесистемной оптимизации сейчас могут быть интегрированы в систему управления. Полевые дистанционные телеметрические блоки (RTU), система телеметрии и системы управления на сооружениях могут синхронно работать для сокращения существенных затрат на энергоресурсы и достижения других преимуществ для предприятий водоснабжения. Значительный прогресс достигнут в области качества воды, безопасности системы и энергоэффективности. В качестве примера, в настоящее время в США проводится исследование по изучению реакции в реальном времени на террористические акты с использованием оперативных данных и контрольно-измерительных приборов в системе распределения.

Распределенное или централизованное управление

Контрольно-измерительные приборы, такие как расходомеры и анализаторы, могут быть достаточно сложными сами по себе и способными выполнять сложные алгоритмы с использованием многочисленных переменных и с различными выходными данными. Они, в свою очередь, передаются в ПЛК или интеллектуальные блоки RTU, способные осуществлять весьма сложное диспетчерское телеуправление. ПЛК и блоки RTU подключены к централизованной системе управления, которая обычно расположена в головном офисе предприятия водоснабжения или на одном из крупных сооружений. Эти централизованные системы управления могут состоять из мощного ПЛК и системы SCADA, также способные выполнять очень сложные алгоритмы.

В этом случае вопрос заключается в том, где установить интеллектуальную систему или целесообразно ли дублировать интеллектуальную систему на нескольких уровнях. Имеются преимущества наличия локального управления на уровне блока RTU, при которых система становится относительно защищенной от потерь связи с сервером централизованного управления. Недостаток заключается в том, что в блок RTU поступает только локализованная информация. В качестве примера можно привести насосную станцию, оператору которой неизвестен ни уровень воды в емкости, в которую осуществляется перекачивание воды, ни уровень резервуара, из которого осуществляется перекачивание воды.

В масштабе системы отдельные алгоритмы на уровне блока RTU могут иметь нежелательные последствия для работы сооружений, например, за счет запроса слишком большого объема воды в несоответствующее время. Желательно использовать общий алгоритм. Поэтому оптимальным путем является наличие локализованного управления для обеспечения, как минимум, основной защиты в случае потери связи и сохранение возможности управления централизованной системой для принятия общих решений. Эта идея использования каскадных слоев управления и защиты является наиболее оптимальной из двух имеющихся вариантов. Элементы управления блока RTU могут находиться в состоянии покоя и включаться только при возникновении необычных условий или при потере связи. Дополнительное преимущество заключается в том, что относительно непрограммируемые блоки RTU могут использоваться в полевых условиях, так как они требуются только для выполнения относительно простых рабочих алгоритмов. На многих коммунальных предприятиях в США блоки RTU были установлены в 1980-х годах, когда применение относительно дешевых «непрограммируемых» блоков RTU было нормальным явлением.

Эта концепция сейчас также используется, однако, до недавнего времени, немного было сделано для достижения оптимизации в масштабах системы. Компания Schneider Electric внедряет системы управления на базе программного обеспечения (ПО), которое является управляющей программой в режиме реального времени и интегрируется в систему SCADA для автоматизации системы распределения воды (см. Рис. №1).

ПО считывает оперативные данные из системы SCADA о текущих уровнях водохранилища, потоках воды и эксплуатационной готовности оборудования, а затем создает графики для потоков загрязненной и очищенной воды для сооружений, всех насосов и автоматизированных задвижек в системе на плановый период. ПО способно выполнять эти действия в течение менее чем двух минут. Каждые полчаса программа запускается повторно для приспосабливания к изменяющимся условиям, преимущественно, при изменении нагрузки на стороне потребления и неисправности оборудования. Органы управления автоматически включаются ПО, позволяя осуществлять полностью автоматическое управление даже самыми мощными водораспределительными системами без эксплуатационного персонала. Основной задачей при этом является сокращение расходов на распределение воды, преимущественно, расходов на энергоресурсы.

Проблема оптимизации

Анализируя мировой опыт, можно заключить, что многочисленные исследования и усилия были направлены на решение проблемы, связанной с планированием производства, насосами и задвижками в водораспределительных системах. Большая часть этих усилий имела чисто научный характер, хотя было несколько серьезных попыток создания решения на рынке. В 1990-х годах группа американских коммунальных предприятий объединилась для продвижения идеи создания Системы контроля энергопотребления и качества воды (EWQMS) под эгидой исследовательского фонда Американской ассоциации водопроводных сооружений (AWWA). В результате этого проекта было проведено несколько испытаний. Совет по исследованию водных ресурсов (WRC) в Великобритании использовал подобный подход в 1980-х годах. Однако, как США, так и Великобритания были ограничены отсутствием инфраструктуры систем управления, а также недостатком коммерческих стимулов в этой отрасли, поэтому, к сожалению, ни одна из этих стран не достигла успеха, и впоследствии все эти попытки были оставлены.

Имеется несколько пакетов программ моделирования гидравлических систем, в которых используются эволюционные генетические алгоритмы, позволяющие компетентному инженеру принимать обоснованные проектные решения, но ни один из них не может считаться целевой автоматической системой управления в режиме реального времени любой водораспределительной системой.

Более 60 000 систем водоснабжения и 15 000 систем сбора и отведения сточных вод в США являются крупнейшими потребителями электроэнергии в стране, использующими около 75 млрд кВт*ч/год в масштабе всей страны - около 3% от годового потребления электричества в США.

Большинство подходов к решению проблемы оптимизации энергоиспользования указывает на то, что существенная экономия может быть достигнута за счет принятия соответствующих решений в области планирования режимов работы насосов, особенно, при использовании многокритериальных эволюционных алгоритмов (MOEA). Как правило, при этом прогнозируется экономия затрат на энергоресурсы в пределах 10 - 15 %, иногда - более.

Одна из проблем всегда заключалась в интеграции этих систем в реально существующее оборудование. Решения на базе алгоритмов MOEA всегда страдали от относительно низкого быстродействия решения, особенно, в системах, в которых использовалось большее число насосов по сравнению со стандартными системами. Быстродействие решения повышается экспоненциально, при этом, когда число насосов достигает диапазона в пределах от 50 до 100 штук. Это позволяет отнести проблемы в функционировании алгоритмов MOEA к проблемам, связанным с конструкцией, а сами алгоритмы - к системам обучения вместо систем автоматического управления в реальном времени.

Любой предложенный вариант общего решения проблемы распределения воды с наименьшими затратами требует наличия нескольких основных составляющих. Во-первых, это решение должно иметь достаточно высокое быстродействие, чтобы справиться с изменяющимися обстоятельствами в реальных условиях работы, и должно иметь возможность подключения к централизованной системе управления. Во-вторых, оно не должно вмешиваться в работу основных устройств защиты, интегрированных в существующую систему управления. В-третьих, оно должно решать свою задачу по снижению затрат на электроэнергию без негативного влияния на качество воды или надежность водоснабжения.

В настоящее время, и это демонстрирует мировой опыт, соответствующая задача решена путем применения новых, более продвинутых (по сравнению с MOEA) алгоритмов. Благодаря четырем крупным объектам в США, имеются данные о возможном быстродействии соответствующих решений, при этом достигнута цель по сокращению затрат на распределение.

Компания EBMUD составляет 24-часовой график, состоящий из получасовых блоков менее, чем за 53 секунды, компания Washington Suburban в штате Мэриленд решает эту задачу за 118 и менее секунд, компания Eastern Municipal в штате Калифорния делает это за 47 и менее секунд, а компания WaterOne в Канзас-Сити - менее чем за 2 минуты. Это на порядок быстрее по сравнению с системами на базе алгоритмов MOEA.

Определение задач

Затраты на электроэнергию являются основными затратами в системах подготовки и распределения воды и, обычно, уступают только затратам на рабочую силу. Из общих затрат на электроэнергию на работу насосного оборудования приходится до 95 % от всей электроэнергии, приобретаемой коммунальным предприятием, а остальная часть относится к освещению, вентиляции и кондиционированию воздуха.

Очевидно, что сокращение затрат на электроэнергию является основным стимулом для этих коммунальных предприятий, но только не за счет повышения эксплуатационных рисков или снижения качества воды. Любая система оптимизации должна быть способна учитывать изменение предельных условий, таких как эксплуатационные пределы водоема и технологические требования сооружений. В любой реальной системе всегда имеется значительное число ограничений. Эти ограничения включают: минимальную продолжительность работы насосов, минимальное время охлаждения насосов, минимальную скорость потока и максимальное давление на выходе узлов запорной арматуры, минимальную и максимальную производительность сооружений, правила создания давления в насосных станциях, определение продолжительности работы насосов для предотвращения значительных колебаний или гидравлических ударов.

Правила по качеству воды сложнее установить и выразить количественно, так как взаимосвязь между требованиями по минимальному рабочему уровню воды в водохранилище может противоречить необходимости регулярного оборота воды в водохранилище для уменьшения возраста воды. Распад хлора тесно связан с возрастом воды, а также в значительной степени зависит от температуры окружающей среды, что усложняет процесс установления жестких правил для обеспечения требуемого уровня остаточного хлора во всех точках системы распределения.

Интересным этапом каждого проекта внедрения является способность ПО определить «затраты на ограничение» в качестве выходных данных программы оптимизации. Это позволяет нам оспаривать некоторые представления клиентов посредством достоверных данных, и благодаря этому процессу снимать некоторые ограничения. Это является общей проблемой для крупных коммунальных предприятий, где с течением времени оператор может столкнуться с серьезными ограничениями.

Например, на большой насосной станции может существовать ограничение, связанное с возможностью одновременного использования не более трех насосов в связи с обоснованными причинами, заложенными еще на момент строительства станции.

В нашем ПО мы используем схему моделирования гидравлической системы для определения максимального потока на выходе насосной станции в течение дня для обеспечения соответствия любым ограничениям по давлению.

Определив физическую структуру водораспределительной системы, указав зоны повышенного давления, выбрав оборудование, которое будет находиться под автоматическим управлением нашего ПО, и получив согласованный набор ограничений, можно приступать к реализации проекта внедрения. Изготовление по техническим требованиям заказчика (при условии его предварительной подготовленности) и конфигурация обычно занимают от пяти-шести месяцев, за которыми следует всестороннее тестирование в течение трех месяцев и более.

Возможности программных решений

В то время как решение очень сложной проблемы планирования интересует многих, фактически оно является всего лишь одним из многочисленных этапов, необходимых для создания пригодного для использования, надежного и полностью автоматического средства оптимизации. Типичные этапы перечислены ниже:

  • Выбор долгосрочных настроек.
  • Считывание данных из системы SCADA, обнаружение и устранение ошибок.
  • Определение целевых объемов, которые должны находиться в водохранилищах для обеспечения надежности поставок и оборота воды.
  • Считывание любых изменяющихся данных третьей стороны, таких как цены на электроэнергию в реальном времени.
  • Расчет графиков для всех насосов и задвижек.
  • Подготовка данных для системы SCADA для запуска насосов или открытия задвижек по мере необходимости.
  • Обновление данных анализа, таких как прогнозируемый спрос, затраты, оценка водоподготовки.

Большинство этапов в этом процессе будет выполняться в течение всего нескольких секунд, а выполнение решающей программы будет занимать наибольшее время, но, как указано выше, она все еще будет достаточно быстрой для работы в интерактивном режиме.

Операторы водораспределительных систем могут просматривать прогнозы и выходные данные в простом клиенте на базе, например, ОС Windows. На снимке экрана внизу (Рис. №1) на верхнем графике показан спрос, на среднем графике показан уровень воды в водохранилище, а нижний ряд точек является графиком работы насосов. Желтые столбцы указывают текущее время; все, что находится до желтого столбца, является архивными данными; все, что находится после него, является прогнозом на будущее. Из экранной формы видно прогнозируемое повышение уровня воды в водохранилище в условиях работающих насосов (зеленые точки).

Наше ПО предназначено для поиска возможностей сокращения производственных расходов, а также расходов на электроэнергию; тем не менее, расходы на электроэнергию имеют преобладающее влияние. В отношении сокращения расходов на электроэнергию оно выполняет поиск по трем основным направлениям:

  • Перенос использования энергии на периоды с более дешевым тарифом, использование водохранилища для водоснабжения клиентов.
  • Сокращение расходов при пиковом потреблении путем ограничения максимального числа насосов в эти периоды.
  • Сокращение электроэнергии, необходимой для поставки воды в водораспределительную систему, путем использования насоса или группы насосов в режиме, близком к их оптимальной производительности.

Результаты компании EBMUD (Калифорния)

Подобная система начала функционировать в компании EBMUD в июле 2005 года. В первый год работы программа позволила добиться экономии энергоресурсов на 12,5 % (на 370 000 долларов США по сравнению с предыдущим годом, потребление в котором составило 2,7 млн. долларов США), подтвержденной независимыми экспертами. Во второй год работы она позволила получить еще лучшие результаты, и экономия составила около 13,1 %. Главным образом, это было достигнуто за счет переноса электрической нагрузки в трехдиапазонный тарифный режим. До использования соответствующего ПО, компания EBMUD уже прилагала значительные усилия по сокращению расходов на электроэнергию посредством ручного вмешательства операторов и сократила свои расходы на электроэнергию на 500 000 долларов США. Был построен достаточно большой напорный бассейн, который позволил компании отключать все насосы на 6-тичасовой период максимального тарифа, составляющего около 32 центов/кВт*ч. ПО планировало работу насосов для переноса из двух коротких периодов ровного графика нагрузки с каждой стороны пикового периода с тарифом в размере 12 центов/кВт*ч на десятичасовой ночной тариф внепикового периода в размере 9 центов/кВт*ч. Даже при незначительной разнице в стоимости электроэнергии выгода была существенной.

В каждой насосной станции установлено несколько насосов, и в некоторых случаях на одной станции используются насосы разной мощности. Это предоставляет программе оптимизации многочисленные опции для создания различных потоков в водораспределительной системе. Программа решает нелинейные уравнения, связанные с характеристиками гидравлической системы, для определения того, какая комбинация насосов будет обеспечивать требуемый ежедневный массовый баланс с максимальной эффективностью и минимальными расходами. Даже несмотря на то, что компания EBMUD приложила достаточно много усилий для повышения производительности насосов, использование ПО позволило успешно сократить общее число кВт*ч, необходимых для создания потока. На некоторых насосных станциях производительность была повышена более чем на 27 % исключительно за счет выбора требуемого насоса или насосов в соответствующее время.

Повышение качества сложнее выразить в количественном выражении. В компании EBMUD использовалось три операционных правила для повышения качества воды, которые они пытались выполнять в ручном режиме. Первым правилом являлось выравнивание скорости потока на водоочистной станции всего до двух изменений скорости в день. Более равномерные производственные потоки позволяют оптимизировать процесс дозирования химических веществ, получить соответствующий поток с низкой мутностью и стабильные уровни содержания хлора при более чистом водохранилище станции. Сейчас ПО стабильно определяет две скорости потока на водоочистных станциях благодаря надежному прогнозированию спроса и распределяет эти скорости на протяжении всего дня. Вторым требованием было увеличение глубины циклических водохранилищ для сокращения среднего возраста воды. Поскольку ПО является средством регулирования массового баланса, то реализация этой стратегии не составила сложности. Третье требование было наиболее жестким. Поскольку в каскаде имелось несколько резервуаров и насосных станций, подающих воду под различным давлением, компания EBMUD хотела, чтобы все насосные станции работали одновременно, когда в верхнем резервуаре требовалась вода для того, чтобы чистая вода поступала из нижней части каскада вместо старой воды из промежуточного резервуара. Это требование также было соблюдено.

Результаты компании WSSC (Пенсильвания, Нью-Джерси, Мэрилэнд)

Система оптимизации находится в эксплуатации в компании с июня 2006 года. Компания WSSC занимает в США практически уникальное положение, закупая более 80 % своей электроэнергии по реальной цене. Она действует на рынке PJM (штаты Пенсильвания, Нью-Джерси, Мэриленд) и закупает электроэнергию напрямую у независимого рыночного оператора. Остальные насосные станции работают по различным структурам тарифов трех отдельных компаний - поставщиков электроэнергии. Очевидно, что автоматизация процесса оптимизации планирования работы насосов на реальном рынке означает, что планирование должно быть гибким и должно реагировать на часовое изменение цен на электроэнергию.

ПО позволяет решить эту проблему менее, чем за две минуты. Операторы уже достигали успеха в переносе нагрузки на крупных насосных станциях под влиянием цен в течение всего года до установки ПО. Вместе с тем, заметные улучшения в планировании были очевидны уже в течение нескольких дней с момента начала функционирования автоматизированной системы. В первую неделю, была отмечена экономия порядка 400 долларов США в день только на одной насосной станции. Во вторую неделю эта сумма выросла до 570 долларов США в день, а в третью неделю она превысила 1000 долларов США в день. Аналогичные эффекты были достигнуты еще на 17 насосных станциях.

Водораспределительная система компании WSSC характеризуется высоким уровнем сложности и имеет большое количество неуправляемых предохранительных клапанов давления, усложняющих процесс расчета водопотребления и оптимизации. Хранение в системе ограничено примерно до 17,5 % от ежедневного водопотребления, что уменьшает возможность переноса нагрузки на периоды с более низкой стоимостью. Наиболее жесткие ограничения были связаны с двумя крупными водоочистными установками, где допускалось не более 4 переключений насосов в день. С течением времени появилась возможность устранить эти ограничения для повышения экономии в результате проектов реконструкции.

Взаимодействие с системой управления

В обоих указанных примерах требовалось взаимодействие ПО с существующими системами управления. В компании EBMUD уже имелся современный централизованный пакет планирования работы насосов, включающий таблицу с входными данными для каждого насоса максимум с 6 циклами запуска и останова. Было относительно просто использовать эту имеющуюся функцию и получать график работы насосов с данными из этих таблиц после каждого решения задачи. Это означало, что требовалось внесение минимальных изменений в существующую систему управления, а также указывало на наличие возможности использования существующих систем защиты от превышения и понижения скорости потока для водохранилищ.

Загородная система г. Вашингтон была еще более сложной для создания и подключения к системе. В головном офисе не был установлен централизованный ПЛК. Кроме того, в процессе реализации находилась программа по замене непрограммируемых блоков RTU на интеллектуальные ПЛК в полевых условиях. В язык сценариев пакета системы SCADA было добавлено значительное число логических алгоритмов, при этом была решена дополнительная задача обеспечения резервирования данных в серверах системы SCADA.

Использование стратегий общей автоматизации приводит к возникновению интересной ситуации. Если оператор вручную заполняет водохранилище в конкретной зоне, он знает, какие насосы были запущены и, следовательно, он также знает, какие уровни воды в водохранилище следует контролировать. Если оператор использует водохранилище, время заполнения которого составляет несколько часов, он будет вынужден контролировать уровни этого водохранилища в течение нескольких часов с момента запуска насосов. Если в течение этого промежутка времени произойдет потеря связи, он в любом случае сможет устранить эту ситуацию путем остановки насосной станции. Однако, если запуск насосов производится полностью автоматической системой, оператору не обязательно знать, что это произошло, и поэтому система будет в большей степени зависеть от автоматических локализованных органов управления, обеспечивающих защиту системы. В этом заключается функция локализованной логики в полевом блоке RTU.

Как и в любом сложном проекте, связанном с внедрением программного обеспечения, конечный успех зависит от качества входных данных и устойчивости решения к внешним помехам. Каскадные уровни блокировок и устройств защиты требуются для обеспечения уровня безопасности, необходимого для любого жизненно-важного коммунального предприятия.

Заключение

Крупные инвестиции в системы автоматизации и управления предприятий водоснабжения за рубежом позволили создать за последние 20 лет необходимую инфраструктуру для внедрения стратегий общей оптимизации. Предприятия водоснабжения самостоятельно разрабатывают еще более современное программное обеспечение для повышения эффективности использования водных ресурсов, сокращения утечек и улучшения общего качества воды.

Применение ПО является одним из примеров того, каким образом можно достичь финансовой выгоды за счет более эффективного использования значительных предварительных инвестиции в системы автоматизации и управления.

Наш опыт позволяет утверждать, что использование соответствующего опыта на предприятиях водоснабжения в России, построение расширенных систем централизованного управления является перспективным решением, способным эффективно решить блок актуальных задач и проблем отрасли.


Пояснительная записка

Настоящая рабочая учебная программа разработана в соответствии с Государственным общеобязательным стандартом образования РК по специальности 2006002 «Сооружение и эксплуатация газонефтепроводов и газонефтехранилищ», а поэтому предназначена для реализации государственных требования к уровню подготовки специалистов по предмету «насосные и компрессорные станции» и является основной при необходимости для составления рабочей учебной программы.

Программа предмета «Насосные и компрессорные станции магистральных газонефтепроводов» предусматривает изучение приемов эксплуатации, ремонтно-технического обслуживания установок, различных типов насосных и компрессорных станции. Особое внимание уделено компрессорным цехам с газотурбинным, газомоторным и электрическим приборам по изучению приемов эксплуатации и ремонта технического оборудования. При изучении предмета необходимо использовать достижения и разработки как в отечественной так и в зарубежной практике. Информации различных серий по технологии перекачки нефти и газа, а также газоконденсата и нефтепродуктов при выполнении расчетов необходимо соблюдение ГОСТа и ЕСКД.

При реализации настоящей рабочей программы необходимо использовать дидактические и наглядные пособия, схемы, уроки на компрессорных и насосных станциях.

Настоящая рабочая программа предусматривает проведение практических занятий, которые способствуют успешному усвоению учебного материала, приобретение навыков в решении практических задач связанных с работой компрессорных и насосных станции, необходимо проводить экскурсии на действующие станции.


Тематический план

Наименование разделов и тем

Количество учебных часов

Всего часов

в том числе

теоретические

практические

Насосные агрегаты применяемые на нефтеперекачивающих станциях магистральных трубопроводов

Эксплуатация нефтеперекачивающих станций

Генеральный план НПС

Резервуарные парки нефтеперекачивающих станций

Основные сведения о магистральном газопроводе

Классификация компрессорных станций Назначение состав сооружений и генеральные планы компрессорных станций

Трубопроводная арматура применяемая на насосных и компрессорных станциях

Водоснабжение станций

Водоотведение станций

Теплоснабжение станций

Вентиляция станций

Энергоснабжение станций


Тема 1. Насосные агрегаты применяемые на нефтеперекачивающих станциях магистральных трубопроводов

Технологические схемы и основные оборудования, КС и насосных станциях, а также вспомогательное оборудование перекачивающих агрегатов. Основные узлы и блоки на КС и насосных станциях.

Характеристики насосов, работа насосов на сеть. Выбор насоса по заданным параметрам. Параллельное и последовательное соединение насосов. Методы регулирования режима работы насосов. Неустойчивая работа насосов: Помпаж и кавитация.

Тема 2. Эксплуатация нефтеперекачивающих станций

Компремация газа на КС, основные параметры, контролируемые на КС. Деление КС по технологическому принципу. Операции проводимые на КС. Основные группы КС. Основные задачи персонала, осуществляющие эксплуатацию, техобслуживание и ремонт оборудования, систем и сооружении КС. Классификация НПС и характеристика основных объектов. Генеральных план НПС.

Тема 3 . Генеральный план НПС

Насосный агрегат. Вспомогательные системы. Основное и вспомогательное оборудование компрессорных станций.

Тема 4. Резервуарные парки нефтеперекачивающих станций

Поршневые насосы. Центробежные насосы. Вихревые насосы. Подпорные насосы. Их основные характеристики. Подача. Напор. Мощность. КПД. Каавитационный запас.

Тема 5. Основные сведения о магистральном газопроводе

Турбоблок. Камера сгорания. Пусковой турбо детонатор. Турбодетандер. Лалопаворотные устройства. Элементы масло системы. Системы регулирования. Базовые модификации газоперекачивающих агрегатов. Нагнетатели производства АО «невский завод» (г. Санкт- Петербург), АО «Казанский компрессорный завод (г.Казань), АО «СМНПО им.М.В.Фрунце» (г.Сумы).

Тема 6 Классификация компрессорных станций Назначение состав сооружений и генеральные планы компрессорных станций

Характеристика эксплуатации ПГПА. Особенности ПГПА. Область их применения. Назначение поршневых ГПА.

Тема7. Трубопроводная арматура применяемая на насосных и компрессорных станциях

Совмещение компрессорных цехов. Блочные конструкции ПГПА. Основные функции блоков. Состав газоперекачивающего агрегата ГПУ.

Тема 8. Водоснабжение станций.

Устройство. Турбины высокого давления и соплового аппарата, устройство турбины низкого давления и корпусов ГТУ.

Тема 9. Водоотведения станций

Исполнение газотурбинных установок. Требования предъявляемые к корпусу газотурбинных установок. Эксплуатационные характеристики.

Тема 10 Теплоснабжение станций

Виды вспомогательных систем. Функции данных систем.

Агрегатная функция

Станционная функция

Вспомогательные системы газоперекачивающих агрегатов.

Тема 11. Вентиляция станций

Основные сведения по системам водоснабжения. Источники водоснабжения и водозаборные сооружения. Виды водоотводящих сетей. Оборудование водоотводящих сетей.

Тема 12. Система энергоснабжения

Обще цеховая и агрегатные системы маслоснабжения. Аварийный слив масла. Работа смазочной системы. Система охлаждения масла на базе аппаратов воздушного охлаждения.

Список использованной литературы

1. Суринович В.К. Машинист технологических компрессоров 1986г.

2. Резвин Б.С. Газотурбинные и газоперекачивающие агрегаты 1986г.

3. Бронштейн Л.С. Ремонт газотурбинной установки 1987г.

4. Громов В.В. Оператор магистральных газопроводов.

5. Нефтепромысловые оборудования Е.И.Бухаренко. Недра,1990г.

6. Нефтепромысловые машины и механизмы. А.Г.Молчанов. Недра,1993г.

апрель 2001 г.

В одной из публикаций ("ЖКХ", N 3/2001), где речь шла о вопросах экономической эффективности внедрения информационных технологий на предприятиях инженерных сетей, мы вскользь упоминали об оптимизации оперативного управления насосными станциями и регулирования запасов воды в резервуарах. В частности, было отмечено, что в структуре себестоимости водоснабжения львиная доля приходится на электроэнергию, и снижение затрат за счет оптимизации режимов работы насосных агрегатов позволяет получить весьма существенную экономию. Целью данной статьи является более подробное освещение этого вопроса.

У проблемы оптимизации управления режимами водоснабжения есть несколько составляющих, каждая из которых носит достаточно изолированный характер и способна дать хороший экономический эффект, а будучи рассматриваемы в комплексе, они в состоянии вывести технологический процесс на качественно новый уровень. Рассмотрим эти составляющие.

    Управление насосными агрегатами. Существует и применяется на практике несколько видов регулирования подач: включение/выключение групп насосов и отдельных агрегатов (дискретное управление); дросселирование и рециркуляция потока; применение электропривода с переменной частотой вращения. Каждый насосный агрегат имеет свою фактическую расходно-напорную характеристику, . каждой точке которой соответствует некоторое паспортное значение потребляемой мощности электродвигателя. Именно выбор комбинации работающих насосных агрегатов и способа регулирования в зависимости от гидравлической характеристики сети и требуемых значений подач определяет положение текущей рабочей точки, а следовательно, и текущее значение потребляемой мощности по каждому агрегату и всей насосной станции в целом. Следовательно, критерием оптимизации является обеспечение заданного режима работы насосной станции по подачам и давлениям при минимально возможном расходе электроэнергии с учетом всех доступных способов регулирования. Основных проблем две: идентификация и "пересчет" реальных характеристик насосных агрегатов (они, как правило, не соответствуют паспортным, и, кроме того, изменяются с течением времени в силу естественного износа), а также расчет и построение совокупной характеристики "расход-напор-мощность" для группы работающих насосов по известным характеристикам каждого из них. Обе проблемы легко решаемы при наличии средств измерений для проведения время от времени натурных испытаний насосных агрегатов, а также соответствующего компьютерного математического обеспечения. Сама по себе оптимизация регулирования п этом не вызывает принципиальных сложностей - методы и алгоритмы решения таких задач разработаны достаточно давно и проверены практикой, достаточно эти методы знать и уметь применить. Результатом решения задачи оптимизации в каждый конкретный момент времени является выработка рекомендации по осуществлению такого комплекса управляющих воздействий (включение/отключение агрегатов, изменение положения дросселирующего клапана, изменение частоты вращения электродвигателей), который переводит текущую рабочую точку совокупной характеристики насосной станции к значению, которому соответствуют минимально достижимая при этом потребляемая электрическая мощность приводов насосов. При наличии технических средств телеметрии и дистанционного управления эти оптимальные управляющие воздействия могут осуществляться автоматически, с некоторым заданным интервалом времени. При отсутствии средств телеуправления полученные от компьютерной программы рекомендации выполняются диспетчерским персоналом в обычном "ручном" режиме, а сама оптимизация выполняется каждый раз при существенном изменении требуемых режимных параметров. Побочным полезным эффектом при этом является сохранение и возможность анализа электронного журнала значений параметров работы насосной станции и "истории" управляющих воздействий.

    Управление запасами воды в резервуарах на основе статистических данных и прогноза водопотребления. Специалистами нашей компании создана уникальная в своем роде математическая модель прогнозирования водопотребления на основе накапливаемых данных по подачам и уровням воды в резервуарах. "Изюминкой" модели является специальный учет так называемых "нерегулярных дней", описание которых "не укладывается" в рамки обычного календарного временного ряда. Их особенность состоит в том, что они повторяются из года в год, приходясь каждый раз на различные дни недели (официальные и неофициальные праздники и связанные с ними переносы рабочих дней), или даже на различные недели и месяцы (в частности, религиозные праздники, такие как Пасха). В математической модели прогноза учитываются, кроме того, метеорологические данные и некоторые другие факторы, существенно влияющие на водопотребление. (Диспетчеры знают об эффекте "Штирлица", проявившемся впервые во время премьерного показа фильма "Семнадцать мгновений весны", когда в часы демонстрации по ТВ водопотребление в городах падало почти до нуля, тогда как обычно на вечерние часы приходится пик водоразбора - вместо "помыться-постираться" люди не отрываясь, сидели у телевизоров. В результате кое-где имели место переполнения резервуаров с затоплением прилегающих территорий). Основой для решения задачи прогнозирования потребления воды является многолетний архив данных почасовых измерений, для накопления которых предусмотрен специальный автоматизированный компьютерный журнал. Данные в этот журнал могут заноситься как автоматически, с использованием средств телемеханики (если они есть и работают), так и в "ручном" режиме, на основе суточных рапортов, поступающих с насосных станций в виде бумажных, электронных или факсимильных документов. Ориентируясь на данные прогноза, можно эффективно планировать загрузку насосных станций второго подъема для обеспечения необходимых запасов в резервуарах чистой воды, поскольку текущие значения уровней воды в них вкупе с данными прогноза водопотребления позволяют сформировать обоснованное "задание" для программы оптимизации режимов работы насосных станций (об этом шла речь выше). Точность прогноза, конечно же, существенно зависит от величины периода, за который накоплены архивные данные, от вида прогноза и времени "упреждения", но в любом случае она достаточно высока. Так, на основе многолетнего архива данных МГП "Мосводоканал", в центральной диспетчерской службе которого эксплуатируется описываемая модель, достигнуты следующие показатели точности прогнозов: средняя абсолютная процентная ошибка составляет примерно 1,3% для месячных данных, менее 5% для данных суточного прогноза, и около 2,5% для почасового прогноза. Кроме собственно прогнозирования, наличие архива данных позволяет строить аналитические отчеты и графики любой сложности - как во временной развертке, так и корреляционные.

  1. Моделирование гидравлических режимов сети водоснабжения с учетом суточной неравномерности нагрузки. С некоторой степенью условности альтернативой задаче прогноза водопотребления на основе архивов реальных измерений может являться задача почасового моделирования потокораспределения в водопроводной сети. Это классическая задача гидравлического расчета, но с существенным дополнением. Если для обычного гидравлического расчета в качестве исходных данных по потребителям задается расчетная нагрузка в виде среднесуточного либо максимального значения водоразбора, то в рассматриваемой задаче для каждого потребителя задается и так называемый "суточный график водопотребления" (а точнее, один из нескольких существующих типов графиков суточной неравномерности). В этом случае может быть выполнен почасовой гидравлический расчет сети, в результате которого формируется график заполнения резервуаров. Следует отметить, что для целей оперативного управления использовать данный метод вряд ли целесообразно в силу возможных значительных отклонений реальных параметров водопотребления от расчетных величин. Однако как инструмент поверочного расчета при долгосрочном проектировании режимов и схем водоснабжения, проектировании новых подключений, анализе качественных и количественных характеристик гидравлических режимов в системе водоснабжения - такое моделирование представляется весьма полезным.

Все описанные выше математические модели и алгоритмы реализованы специалистами нашей компании в виде специализированной информационно-графической системы (ИГС) "AnWater" . Это весьма сложный программный комплекс, интегрирующий несколько подсистем разного функционального назначения и предназначенный для эксплуатации персоналом центральных и районных диспетчерских служб муниципальных предприятий водоснабжения. В различном функциональном составе ИГС "AnWater" внедрена в водоканалах нескольких крупных городов России и прошла многолетнюю проверку промышленной эксплуатацией.

В заключение - несколько слов в адрес двух самых крупных в стране водоканалов. Создание информационно-технологических систем такого класса как ИГС "AnWater" , аккумулирующих в себе массу наукоемких решений, сложных математических моделей, знаний и методов прикладной предметной области, и требующих кропотливой и тщательной выверки и отладки, - невозможно без заинтересованности и поддержки со стороны персонала предприятия-заказчика. Сотрудники и руководители служб МГП "Мосводоканал" и его филиалов (Северная водопроводная станция, Производственное управление регулирующих узлов), а впоследствии и ГУП "Водоканал Санкт-Петербурга" на протяжении нескольких лет терпеливо и внимательно вникали в разрабатываемый и внедряемый "с колес" программный продукт, засыпали нас замечаниями и пожеланиями, заставляя в итоге делать систему не так, как нам было проще с точки зрения разработчиков, а так, как правильно и удобно с точки зрения эксплуатации. Персонал Московского и Питерского водоканалов, с которым при разработке и внедрении нам пришлось работать в постоянном контакте, проявил максимум терпимости и доброжелательности, а высокая профессиональная квалификация сотрудников, безусловно, сыграла свою роль при формировании предметных требований к системе. Именно благодаря сотрудничеству с этими двумя предприятиями ИГС "AnWater" и сейчас продолжает совершенствоваться и "обрастать" новыми задачами, но уже и в своем нынешнем виде эта система стала полноценным высококачественным продуктом, которому по функциональному составу и характеристикам математических моделей аналога в мире на сегодняшний день практически не существует. Пользуясь случаем, со страниц журнала я хочу от имени ИВЦ "Поток" высказать признательность коллективам МГП "Мосводоканал", его филиалов (СВС, ПУРУ) и ГУП "Водоканал Санкт-Петербурга" за их вклад в развитие отечественных интеллектуальных технологий, пожелать им успехов и выразить надежду на дальнейшее сотрудничество, от которого в конечном итоге выигрывают все.

1. Аналитический обзор основ насосной теории, нагнетательного
оборудовании и технологии решения задач создания и повышения
напора в системах подачи и распределения воды (СПРВ)
10

1.1. Насосы. Классификация, основные параметры и понятия.

Технический уровень современного насосного оборудования 10

    Основные параметры и классификация насосов 10

    Насосное оборудование для повышения напора в водоснабжении.... 12

    Обзор новаций и усовершенствований насосов с точки зрения практики их применения 16

    1.2. Технология применения нагнетателей в СПРВ 23

    1. Насосные станции систем водоснабжения. Классификация 23

      Общие схемы и способы регулирования работы насосов при повышении напора 25

      Оптимизация работы нагнетателей: регулирования скорости и совместная работа 30

      Проблемы обеспечения напоров в наружных и внутренних водопроводных сетях 37

      Выводы но главе 40

    2. Обеспечение потребного напора в наружных и внутренних
    водопроводных сетях. Повысительиые компоненты СПРВ на уровне
    районных, квартальных и внутренних сетей
    41

    2.1. Общие направления развития в практике применения насосного

    оборудования для повышения напора в водопроводных сетях 41

    л 2.2". Задачи обеспечения потребных напоров в водопроводных сет

      Краткая характеристика СПРВ (на примере СПб)

      Опыт решения задач повышения напора на уровне районных и квартальных сетей 48

    2.2.3. Особенности задач повышения напора во внутренних сетях 55

    2.3. Постановка задачи оптимизации повысительных компонентов

    СПРВ на уровне районных, квартальных и внутренних сетей 69

    2.4. Выводы по главе „.._. 76

    3. Математическая модель оптимизации насосного оборудования

    на периферийном уровне СПРВ 78

    3.1. Статическая оптимизация параметров насосного оборудования

    на уровне районных, квартальных и внутренних сетей 78

      Общее описание структуры районной водопроводной сети при решении задач оптимального синтеза.". 78

      Минимизация энергетических затрат на один режим водопотребления „ 83

    3.2. Оптимизация параметров насосного оборудования на периферий
    ном уровне СПРВ при изменении режима водопотребления 88

      Полирежимиое моделирование в задаче минимизации энергетических затрат (общие подходы) 88

      Минимизация энергетических затрат при возможности регулирования скорости (частоты вращения колеса) нагнетателя 89

    2.3. Минимизация энергетических затрат в случае

    каскадно-частотного регулирования (управления) 92

    Имитационная модель для оптимизации параметров насосного
    оборудования на периферийном уровне СПРВ 95

    3.4. Выводы по главе

    4". Численные методы решения задач оптимизации параметров
    насосного оборудования
    101

    4.1. Исходные данные для решения задач оптимального синтеза, 101

      Изучение режима водопотребления методами анализа временных рядов _ 101

      Определение регулярностей временного ряда водопотребления 102

      Частотное распределение расходов и коэффициенты

    Неравномерности водопотребления 106

    4.2. Аналитическое представление рабочих характеристик насосного
    оборудования, 109

      Моделирование рабочих характеристик отдельных нагнетателей тят 109

      Идентификация рабочих характеристик нагнетателей в составе насосных станций 110

    4.3. Поиск оптимума целевой функции 113

      Оптимальный поиск с использованием градиентных методов 113

      Модифицированный план Холлаида. 116

    4.3.3. Реализация оптимизационного алгоритма на ЭВМ 119

    4.4. Выводы по главе 124

    5. Сравнительная эффективность повысительных компонентов

    СПРВ на основе оценки стоимости жизненного цикла

    (с применением МИК для измерения параметров) 125

    5.1. Методология оценки сравнительной эффективности

    повысительных компонентов на периферийных участках СПРВ 125

    5.1.1. Стоимость жизненного цикла насосного оборудования., 125

      Критерий минимизации совокупных дисконтированных затрат для оценки эффективности повысительных компонентов СПРВ 129

      Целевая функция экспресс-модели для оптимизации параметров насосного оборудования на периферийном уровне C1IPB 133

    5.2. Оптимизация повысительных компонентов на периферийных
    участках СПРВ при реконструкции и модернизации 135

      Система контроля подачи воды с использованием мобильного измерительного комплекса МИК 136

      Экспертная оценка результатов измерения параметров насосного оборудования ПНС с использованием МИК 142

      Имитационная модель стоимости жизненного цикла насосного оборудования ПНС на основе данных параметрического аудита 147

    5.3. Организационные вопросы реализации оптимизационных

    решений (заключительные положения) 152

    5.4. Выводы по главе 1 54

    Общие выводы.„ 155

    Список ли гературы 157

    Приложение 1. Некоторые понятия, функциональные зависимости и
    характеристики, существенные при выборе насосов 166

    Приложение 2. Описание программы для исследования

    оптимизационных моделей СПРВ микрорайона 174

    Приложение 3. Решение задач оптимизации и построение

    имитационных моделей LCCD НС с помощью табличного процессора 182

    Введение к работе

    Система подачи и распределения воды (СПРВ) является главным ответственным комплексом сооружений водоснабжения, обеспечивающим транспортировку воды на территорию снабжаемых объектов, распределение по территории и доставку к местам отбора потребителями. Нагнетательные (повыси-тельные) насосные станции (НС, ПНС), как один из основных структурных элементов СПРВ, во многом задают эксплуатационные возможности и технический уровень системы водоснабжения в целом, а также существенно определяют экономические показатели ее работы.

    Значимый вклад в разработку тематики висели отечественные ученые: Н.Н.Абрамов, М.М.Андрияшев, А.Г.Евдокимов, Ю.А.Ильин, С.Н.Карамбиров, В.Я.Карелин, А.М.Курганов, А.П.Меренков, Л.Ф.Мошнин, Е.А.Прегер, С.В.Сумароков, А.Д.Тевяшев, В.Я.Хасилев, П.Д.Хорунжий, Ф.АЛИевслев и др.

    Проблемы при обеспечении напоров в водопроводных сетях, стоящие перед российскими коммунальными предприятиями, как правило, однородны. Состояние магистральных сетей привело к необходимости снижения давления, вследствие чего возникла задача компенсировать соответствующее падение напора на уровне районных и квартальных сетей. Подбор насосов в составе ПНС зачастую производился с учетом перспектив развития, параметры производительности и напора завышались. Распространенным стал вывод насосов на потребные характеристики дросселированием с помощью задвижек, приводящий к перерасходу электроэнергии. Замена насосов вовремя не производится, большинство из них работает с низким КПД. Износ оборудования обострил необходимость реконструкции ПНС для повышения КПД и надежности работы.

    С другой стороны, развитие городов и увеличение высотности домов, особенно при уплотнительной застройке, требуют обеспечения потребных напоров для новых потребителей, в том числе за счет оснащения нагнетателями домов повышенной этажности (ДПЭ). Создание напора, необходимого для раз-їичньіх потребителей, в оконечных участках водопроводной сети, может яв-ться одним из наиболее реальных путей повышения эффективности СПРВ.

    Совокупность указанных факторов является основанием постановки задачи определения оптимальных параметров ПЫС при имеющихся ограничениях входных напоров, в условиях неопределенности и неравномерности фактических расходов. При решении задачи встают вопросы сочетания последовательной работы групп насосов и параллельной работы насосов, объединенных в пределах одной группы, а также оптимального совмещения работы параллельно соединенных насосов с частотным регулированием привода (ЧРП) и, в конечном счете, подбора оборудования, обеспечивающего потребные параметры конкретной системы водоснабжения. Следует учитывать значимые изменения последних лет в подходах к подбору насосного оборудования - как в плане исключения избыточности, так и в техническом уровне доступного оборудования.

    Актуальность рассматриваемых в диссертации вопросов определяется возросшим значением, которое в современных условиях отечественные хозяйствующие субъекты и общество в целом придают проблеме эиергоэффективно-сти. Насущная необходимость решения этой проблемы закреплена в Федеральном Законе Российской Федерации от 23.11.2009 г. № 261-ФЗ "Об энергосбережении и о повышении энергетической эффективности и о внесении изменений в отдельные законодательные акты Российской Федерации".

    Эксплуатационные расходы СПРВ составляют определяющую часть затрат на водоснабжение, которая продолжает увеличиваться в связи с ростом тарифов на электроэнергию. С целью снижения энергоемкости большое значение придается оптимизации СПРВ. По авторитетным оценкам от 30% до 50 % энергозатрат насосных систем может быть сокращено за счет изменения насосного оборудования и способов управления.

    Поэтому представляется актуальным совершенствование методологических подходов, разработка моделей и комплексного обеспечения принятия решений, позволяющих оптимизировать параметры нагнетательного оборудования периферийных участков сети, в том числе при подготовке проектов. Распределение потребного напора между насосными узлами, а также определение в пределах узлов, оптимального числа и типа насосных агрегатов с учетом рас-

    8 четной подачи, обеспечат анализ вариантов периферийной сети. Полученные результаты могут быть интегрированы в задачу оптимизации СПРВ в целом.

    Цель работы - исследование и разработка оптимальных решений при выборе повысительного насосного оборудования периферийных участков СПРВ в процессе подготовки реконструкции и строительства, включая методическое, математическое и техническое (диагностическое) обеспечение.

    Для достижения цели в работе решались следующие задачи:

    анализ практики в сфере повысительных насосных систем с учетом возможностей современных насосов и методов регулирования, сочетания последовательной и параллельной работы с ЧРП;

    определение методического подхода (концепции) оптимизации повысительного насосного оборудования СПРВ в условиях ограниченности ресурсов;

    разработка математических моделей, формализующих задачу выбора насосного оборудования периферийных участков водопроводной сети;

    анализ и разработка алгоритмов численных методов для исследования предложенных в диссертации математических моделей;

    разработка и практическая реализация механизма сбора исходных данных для решения задач реконструкции и проектирования новых ПНС;

    реализация имитационной модели формирования стоимости жизненного цикла по рассматриваемому варианту оборудования ПНС.

    Научная новизна. Представлена концепция периферийного моделирования подачи воды в контексте сокращения энергоемкости СПРВ и снижения стоимости жизненного цикла "периферийного" насосного оборудования.

    Разработаны математические модели для рационального выбора параметров насосных станций с учетом структурной взаимосвязи и полирежимного характера функционирования периферийных элементов СПРВ.

    Теоретически обоснован подход к выбору числа нагнетателей в составе ПНС (насосных установок); проведено исследование функции стоимости жизненного цикла ПНС в зависимости от числа нагнетателей.

    Разработаны специальные алгоритмы поиска экстремумов функций многих переменных, основанные на градиентных и случайных методах, для.исследования оптимальных конфигураций НС на периферийных участках.

    Создан, мобильный измерительный комплекс (МИК) для диагностики действующих повысительпых насосных систем, запатентованный в полезной модели № 81817 "Система контроля подачи воды".

    Определена методика выбора оптимального варианта насосного оборудования ПНС на базе имитационного моделирования стоимости жизненного цикла.

    Практическая значимость и реализация результатов работы. Даны рекомендации по выбору типа насосов для повысительных установок и Ш 1С на основе уточненной классификации современного насосного оборудования для повышения напора в системах водоснабжения с учетом таксонометричсского деления, эксплуатационных, конструктивных и технологических признаков.

    Математические модели ПНС периферийных участков СПРВ позволяют снизить стоимость жизненного цикла за счет выявления "резервов", в первую очередь в части энергоемкости. Предложены численные алгоритмы, позволяющие доводить до конкретных значений решение оптимизационных задач.

Поделиться