Какие особенности имеют клетки проводящей ткани. Проводящие ткани

В процессе эволюции является одной из причин, которые сделали возможным выход растений на сушу. В нашей статье мы рассмотрим особенности строения и функционирования ее элементов - ситовидных трубок и сосудов.

Особенности проводящей ткани

Когда на планете произошли серьезные изменения климатических условий, растениям пришлось приспосабливаться к ним. До этого все они обитали исключительно в воде. В наземно-воздушной среде стала необходимой добыча воды из почвы и ее транспортировка ко всем органам растения.

Различают два вида проводящей ткани, элементами которой являются сосуды и ситовидные трубки:

  1. Луб, или флоэма - расположена ближе к поверхности стебля. По ней органические вещества, образованные в листе во время фотосинтеза, передвигаются по направлению к корню.
  2. Второй тип проводящей ткани называется древесина, или ксилема. Она обеспечивает восходящий ток: от корня к листьям.

Ситовидные трубки растений

Это проводящие клетки луба. Между собой они разделены многочисленными перегородками. Внешне их строение напоминает сито. Отсюда и происходит название. Ситовидные трубки растений живые. Это объясняется слабым давлением нисходящего тока.

Их поперечные стенки пронизаны густой сетью отверстий. А клетки содержат много сквозных отверстий. Все они являются прокариотическими. Это означает, что в них нет оформленного ядра.

Живыми элементы цитоплазмы ситовидных трубок остаются только на определенное время. Продолжительность этого периода варьирует в широких пределах - от 2 до 15 лет. Данный показатель зависит от вида растения и условий его произрастания. Ситовидные трубки транспортируют воду и органические вещества, синтезированные в процессе фотосинтеза от листьев к корню.

Сосуды

В отличие от ситовидных трубок, эти элементы проводящей ткани представляют собой мертвые клетки. Визуально они напоминают трубочки. Сосуды имеют плотные оболочки. С внутренней стороны они образуют утолщения, которые имеют вид колец или спиралей.

Благодаря такому строению сосуды способны выполнять свою функцию. Она заключается в передвижении почвенных растворов минеральных веществ от корня к листьям.

Механизм почвенного питания

Таким образом, в растении одновременно осуществляется передвижение веществ в противоположных направлениях. В ботанике этот процесс называют восходящим и нисходящим током.

Но какие силы заставляют воду из почвы двигаться вверх? Оказывается, что это происходит под влиянием корневого давления и транспирации - испарения воды с поверхности листьев.

Для растений этот процесс является жизненно необходимым. Дело в том, что только в почве находятся минералы, без которых развитие тканей и органов будет невозможным. Так, азот необходим для развития корневой системы. В воздухе этого элемента предостаточно - 75 %. Но растения не способны фиксировать атмосферный азот, поэтому минеральное питание так важно для них.

Поднимаясь, молекулы воды плотно сцепляются между собой и стенками сосудов. При этом возникают силы, способные поднять воду на приличную высоту - до 140 м. Такое давление заставляет почвенные растворы через корневые волоски проникать в кору, и далее к сосудам ксилемы. По ним вода поднимается к стеблю. Далее, под действием транспирации, вода поступает в листья.

В жилках рядом с сосудами находятся и ситовидные трубки. Эти элементы осуществляют нисходящий ток. Под воздействием солнечного света в хлоропластах листа синтезируется полисахарид глюкоза. Это органическое вещество растение расходует на осуществление роста и процессов жизнедеятельности.

Итак, проводящая ткань растения обеспечивает передвижение водных растворов органических и минеральных веществ по растению. Ее структурными элементами являются сосуды и ситовидные трубки.

В процессе эволюции с выходом высших растений на сушу у них возникли ткани, которые достигли своей наибольшей специализации у цветковых растений. В этой статье мы рассмотрим подробнее, что представляют собой ткани растений, какие виды их существуют, какие функции они выполняют, а также особенности строения тканей растений.

Тканью называют группы клеток, сходных по своему строению и выполняющих одинаковые функции .

Основные ткани растений представлены на рисунке ниже:

Виды, функции и строение тканей растений.

Покровная ткань растений.

Покровная ткань растений — корка

Проводящая ткань растений.

Название ткани Строение Местонахождение Функции
1. Сосуды древесины – ксилема Полые трубки с одревесневающими стенками и отмершим содержимым Древесина (ксилема), проходящая вдоль корня, стебля, жилок листьев Проведение воды и минеральных веществ из почвы в корень, стебель, листья, цветки

2.Ситовидные трубки луба — флоэма

Сопровождающие клетки или клетки-спутницы

Вертикальный ряд живых клеток с ситовидными поперечными перегородками

Сестринские клетки ситовидных элементов, сохранившие свою структуру

Луб (флоэма), расположенный вдоль корня, стебля, жилок листьев

Всегда располагаются вдоль ситовидных элементов (сопровождают их)

Проведение органических веществ из листьев в стебель, корень, цветки

Принимают активное участие в проведении органических веществ по ситовидным трубкам флоэмы

3. Проводящие сосудисто-волокнистые пучки Комплекс из древесины и луба в виде отдельных тяжей у трав и сплошного массива у деревьев Центральный цилиндр корня и стебля; жилки листьев и цветков Проведение по древесине воды и минеральных веществ; по лубу - органических веществ; укрепление органов, связь их в единое целое

Механическая ткань растений.

Почти все многоклеточные живые организмы состоят из различных типов тканей. Это совокупность клеток, похожих по строению, объединенных общими функциями. Для растений и животных они неодинаковы.

Разнообразие тканей живых организмов

В первую очередь все ткани можно разделить на животные и растительные. Они бывают разными. Давайте рассмотрим их.

Какими могут быть животные ткани?

Животные ткани бывают таких типов:

  • нервная;
  • мышечная;
  • эпителиальная;
  • соединительная.

Все они, кроме первой, делятся на бывает гладкой, поперечно-полосатой и сердечной. Эпителиальная делится на однослойную, многослойную - в зависимости от количества слоев, а также на кубическую, цилиндрическую и плоскую - в зависимости от формы клеток. Соединительная ткань объединяет такие виды, как рыхлая волокнистая, плотная волокнистая, ретикулярная, кровь и лимфа, жировая, костная и хрящевая.

Разнообразие тканей растений

Растительные ткани бывают следующих типов:

  • основная;
  • покровная;
  • механическая;
  • образовательная.

Все типы растительных тканей объединяют несколько видов. Так, к основным относятся ассимиляционная, запасающая, водоносная и воздухоносная. объединяют такие виды, как кора, пробка и эпидерма. К проводящей ткани относятся флоэма и ксилема. Механическая делится на колленхиму и склеренхиму. К образовательным относятся боковые, верхушечные и вставочные.

Все ткани выполняют определенные функции, и их строение соответствует роли, которую они выполняют. В этой статье будет рассмотрена подробнее проводящая ткань, особенности строения ее клеток. Также поговорим и о ее функциях.

Проводящая ткань: особенности строения

Эти ткани делятся на два вида: флоэму и ксилему. Так как они обе сформированы из одной и той же меристемы, то в растении они расположены рядом друг с другом. Однако строение проводящих тканей двух видов различается. Давайте поговорим подробнее о двух типах проводящих тканей.

Функции проводящих тканей

Их основная роль - транспорт веществ. Однако функции проводящих тканей, относящихся не к одному виду, различаются.

Роль ксилемы - проведение растворов химических веществ от корня вверх ко всем остальным органам растения.

А функция флоэмы - проведение растворов в обратном направлении - от определенных органов растения по стеблю вниз к корню.

Что такое ксилема?

Она также еще называется древесиной. Проводящая ткань данного вида состоит из двух разных проводящих элементов: трахеид и сосудов. Также в ее состав входят механические элементы - древесинные волокна, и основные элементы - древесинная паренхима.

Как устроены клетки ксилемы?

Клетки проводящей ткани делятся на два вида: трахеиды и членики сосудов. Трахеида - это очень длинная клетка с ненарушенными стенками, в которых присутствуют поры для транспорта веществ.

Второй проводящий элемент клетки - сосуд - состоит из нескольких клеток, которые называются члениками сосудов. Эти клетки расположены друг над другом. В местах соединения члеников одного и того же сосуда находятся сквозные отверстия. Они называются перфорациями. Эти отверстия необходимы для транспорта веществ по сосудам. Перемещение разнообразных растворов по сосудам происходит намного быстрее, чем по трахеидам.

Клетки обоих проводящих элементов являются мертвыми и не содержат протопластов (протопласты - это содержимое клетки, за исключением то есть это ядро, органоиды и клеточная мембрана). Протопласты отсутствуют, так как если бы они были в клетке, транспорт веществ по ней был бы очень затруднен.

По сосудам и трахеидам растворы могут транспортироваться не только вертикально, но и горизонтально - к живым клеткам или соседним проводящим элементам.

Стенки проводящих элементов имеют утолщения, которые придают клетке прочность. В зависимости от вида данных утолщений, проводящие элементы делятся на спиральные, кольчатые, лестничные, сетчатые и точечно-поровые.

Функции механических и основных элементов ксилемы

Древесинные волокна еще называются либриоформом. Это вытянутые в длину клетки, которые обладают утолщенными одревесеневшими стенками. Они выполняют опорную функцию, обеспечивающую прочность ксилемы.

Элементы в ксилеме представлены древесинной паренхимой. Это клетки с одревесневшими оболочками, в которых располагаются простые поры. Однако в месте соединения клетки паренхимы с сосудом находится окаймленная пора, которая соединяется с его простой порой. Клетки древесинной паренхимы, в отличие от клеток сосудов, не пустые. Они обладают протопластами. Паренхима ксилемы выполняет резервную функцию - в ней запасаются питательные вещества.

Чем отличается ксилема разных растений?

Так как трахеиды в процессе эволюции возникли намного раньше, чем сосуды, эти проводящие элементы присутствуют и у низших наземных растений. Это споровые (папоротники, мхи, плауны, хвощи). Большинство голосеменных растений также обладают только трахеидами. Однако у некоторых голосеменных есть и сосуды (они присутствуют у гнетовых). Также, в порядке исключения, названные элементы присутствуют и у некоторых папоротников и хвощей.

А вот покрытосеменные (цветковые) растения все обладают и трахеидами, и сосудами.

Что такое флоэма?

Проводящая ткань данного вида еще называется лубом.

Основная часть флоэмы - ситовидные проводящие элементы. Также в структуре луба присутствуют механические элементы (флоэмные волокна) и элементы основной ткани (флоэмная паренхима).

Особенности проводящей ткани данного вида заключаются в том, что клетки ситовидных элементов, в отличие от проводящих элементов ксилемы, остаются живыми.

Строение ситовидных элементов

Существует два их вида: ситовидные клетки и Первые вытянуты в длину и обладают заостренными концами. Они пронизаны сквозными отверстиями, через которые и происходит транспорт веществ. Ситовидные клетки более примитивны, чем многоклеточные ситовидные элементы. Они характерны для таких растений, как споровые и голосеменные.

У покрытосеменных растений проводящие элементы представлены ситовидными трубками, состоящими из множества клеток - члеников ситовидных элементов. Сквозные отверстия двух соседних клеток образуют ситовидные пластинки.

В отличие от ситовидных клеток, в упомянутых структурных единицах многоклеточных проводящих элементов отсутствуют ядра, однако они все равно остаются живыми. Важную роль в строении флоэмы покрытосеменных растений играют также клеки-спутницы, находятщиеся рядом с каждой клеткой-члеником ситовидных элементов. В спутницах есть как органоиды, так и ядра. В них происходит обмен веществ.

Учитывая то, что клетки флоэмы живые, эта проводящая ткань не может долго функционировать. У многолетних растений период ее жизни составляет три-четыре года, после чего клетки этой проводящей ткани отмирают.

Дополнительные элементы флоэмы

Кроме ситовидных клеток или трубок, в этой проводящей ткани также присутствуют элементы основной ткани и механические элементы. Последние представлены лубяными (флоэмными) волокнами. Они выполняют опорную функцию. Не все растения обладают флоэмными волокнами.

Элементы основной ткани представлены флоэмной паренхимой. Она, так же как и ксилемная паренхима, выполняет резервную роль. В ней запасаются такие вещества, как танниды, смолы и др. Особенно развиты эти элементы флоэмы у голосеменных растений.

Флоэма различных видов растений

У низших растений, таких как папоротники и мхи, она представлена ситовидными клетками. Такая же флоэма характерна и для большей части голосеменных растений.

Покрытосеменные растения обладают многоклеточными проводящими элементами: ситовидными трубками.

Структура проводящей системы растения

Ксилема и флоэма всегда располагаются рядом и образуют пучки. В зависимости от того, как два типа проводящей ткани располагаются друг относительно друга, различают несколько видов пучков. Наиболее часто встречаются коллатеральные. Они устроены таким образом, что флоэма лежит по одну сторону от ксилемы.

Также существуют концентрические пучки. В них одна проводящая ткань окружает другую. Они делятся на два вида: центрофлоэмные и центроксилемные.

Проводящая ткань корня обладает обычно радиальными пучками. В них лучи ксилемы отходят от центра, а флоэма находится между лучами ксилемы.

Коллатеральные пучки больше характерны для покрытосеменных растений, а концентрические - для споровых и голосеменных.

Заключение: сравнение двух типов проводящих тканей

В качестве вывода приведем таблицу, в которой сокращенно указаны основные данные о двух видах проводящих тканей растений.

Проводящие ткани растений
Ксилема Флоэма
Строение Состоит из проводящих элементов (трахей и сосудов), древесинных волокон и древесинной паренхимы. Состоит из проводящих элементов (ситовидных клеток или ситовидных трубок), флоэмных волокон и флоэмной паренхимы.
Особенности проводящих клеток Мертвые клетки, не обладающие плазматическими мембранами, органоидами и ядрами. Имеют вытянутую форму. Располагаются друг над другом и не имеют горизонтальных перегородок. Живые в стенках которых присутствует большое количество сквозных отверстий.
Дополнительные элементы Древесинная паренхима и древесинные волокна. Флоэмная паренхима и флоэмные волокна.
Функции Проведение растворенных в воде веществ вверх: от корня к органам растений. Транспорт растворов химических веществ вниз: от наземных органов растений к корню.

Теперь вы знаете все о проводящих тканях растений: какими они бывают, какие функции выполняют и как устроены их клетки.


Значение и разнообразие проводящих тканей

Проводящие ткани являются важнейшей составной частью большинства высших растений. Они являются обязательным структурным компонентом вегетативных и репродуктивных органов споровых и семенных растений. Проводящие ткани в совокупности с клеточными стенками и межклетниками, некоторыми клетками основной паренхимы и специализированными передаточными клетками образуют проводящую систему, которая обеспечивает дальний и радиальный транспорт веществ. Благодаря особой конструкции клеток и их расположению в теле растений проводящая система выполняет многочисленные, но взаимосвязанные функции:

1) передвижение воды и минеральных веществ, поглощенных корнями из почвы, а также органических веществ, образуемых в корнях, в стебель, листья, репродуктивные органы;

2) передвижение продуктов фотосинтеза из зелёных частей растения в места их использования и запасания: в корни, стебли, плоды и семена;

3) передвижение фитогормонов по растению, что создает определённый их баланс, который определяет темпы роста и развития вегетативных и репродуктивных органов растений;

4) радиальный транспорт веществ из проводящих тканей в рядом расположенные живые клетки других тканей, например, в ассимилирующие клетки мезофилла листа и делящиеся клетки меристем. В нем могут также принимать участие паренхимные клетки сердцевинных лучей древесины и коры. Большое значение в радиальном транспорте имеют передаточные клетки с многочисленными выпячиваниями клеточной оболочки, находящиеся между проводящими и паренхимными тканями;

5) проводящие ткани повышают устойчивость органов растений к деформирующим нагрузкам;

6) проводящие ткани образуют непрерывную разветвленную систему, связывающую органы растений в единое целое;

Возникновение проводящих тканей является результатом эволюционных структурных преобразований, связанных с выходом растений на сушу и разделением их воздушного и почвенного питания. Наиболее древние проводящие ткани – трахеиды обнаружены у ископаемых риниофитов. Наивысшего развития они достигли у современных покрытосеменных.

В процессе индивидуального развития первичные проводящие ткани образуются из прокамбия в точках роста зародыша семени и почек возобновления. Вторичные проводящие ткани, характерные для двудольных покрытосеменных, порождаются камбием.

В зависимости от выполняемых функций проводящие ткани подразделяются на ткани восходящего тока и ткани нисходящего тока. Основным назначением тканей восходящего тока является транспорт воды и растворенных в ней минеральных веществ от корня к выше расположенным надземным органам. Кроме того, по ним перемещаются органические вещества, образуемые в корне и стебле, например, органические кислоты, углеводы и фитогормоны. Однако термин «восходящий ток» не следует воспринимать однозначно как передвижение снизу – вверх. Ткани восходящего тока обеспечивают поток веществ по направлению от зоны всасывания к апексу побега. При этом транспортируемые вещества используются как самим корнем, так и стеблем, ветвями, листьями, репродуктивными органами, независимо от того, выше или ниже уровня корней они находятся. Например, у картофеля вода и элементы минерального питания поступают по тканям восходящего тока в столоны и клубни, образуемые в почве, а также в надземные органы.

Ткани нисходящего тока обеспечивают отток продуктов фотосинтеза в растущие части растений и в запасающие органы. При этом пространственное положение фотосинтезирующих органов не имеет никакого значения. Например, у пшеницы органические вещества поступают в развивающиеся зерновки из листьев разных ярусов. Поэтому к названиям «восходящие» и «нисходящие» ткани следует относиться не более как к сложившейся традиции.

Проводящие ткани восходящего тока

К тканям восходящего тока относятся трахеиды и сосуды (трахеи), которые располагаются в древесинной (ксилемной) части органов растений. В этих тканях передвижение воды и растворенных в ней веществ происходит пассивно под действием корневого давления и испарением воды с поверхности растения.

Трахеиды имеют более древнее происхождение. Они встречаются у высших споровых растений, голосеменных и реже – у покрытосеменных. У покрытосеменных они типичны для мельчайших разветвлений жилок листа. Клетки трахеид мертвые. Они имеют вытянутую, часто веретеновидную форму. Их длина составляет 1 – 4 мм. Однако у голосеменных, например у араукарии, она достигает 10 мм. Стенки клеток толстые, целлюлозные, часто пропитываются лигнином. В клеточных оболочках имеются многочисленные окаймленные поры.

Сосуды сформировались на более поздних этапах эволюции. Они характерны для покрытосеменных, хотя встречаются и у некоторых современных представителей отделов Плауны (род Селлагинелла), Хвощи, Папоротники и Голосеменные (род Гнетум).

Сосуды состоят из удлиненных мертвых клеток, расположенных одна над другой и называемых члениками сосуда. В торцевых стенках члеников сосуда имеются крупные сквозные отверстия – перфорации, через которые осуществляется дальний транспорт веществ. Перфорации возникли в ходе эволюции из окаймленных пор трахеид. В составе сосудов они бывают лестничными и простыми. Многочисленные лестничные перфорации образуются на торцевых стенках члеников сосуда при их косом заложении. Отверстия таких перфораций имеют удлиненную форму, а разделяющие их перегородки располагаются параллельно друг другу, напоминая ступеньки лестницы. Сосуды с лестничной перфорацией характерны для растений семейств Лютиковые, Лимонниковые, Березовые, Пальмовые, Частуховые.

Простые перфорации известны у эволюционно более молодых семейств, таких как Паслёновые, Тыквенные, Астровые, Мятликовые. Они представляют собой одно крупное отверстие в торцевой стенке членика, расположенной перпендикулярно оси сосуда. В ряде семейств, например, у Магнолиевых, Розовых, Ирисовых, Астровых, в сосудах встречаются как простые, так и лестничные перфорации.

Боковые стенки имеют неравномерные целлюлозные утолщения, которые предохраняют сосуды от избыточного давления, создаваемого рядом расположенными живыми клетками других тканей. В боковых стенках могут находиться многочисленные поры, обеспечивающие выход воды за пределы сосуда.

В зависимости от характера утолщений, типов и характера расположения пор сосуды подразделяются на кольчатые, спиральные, биспиральные, сетчатые, лестничные и точечно-поровые. У кольчатых и спиральных сосудов целлюлозные утолщения располагаются в виде колец или спиралей. Через неутолщенные участки осуществляется диффузия транспортируемых растворов в окружающие ткани. Диаметр этих сосудов сравнительно невелик. У сетчатых, лестничных и точечно-поровых сосудов вся боковая стенка, за исключением мест расположения простых пор, утолщена и часто пропитана лигнином. Поэтому радиальный транспорт веществ у них осуществляется через многочисленные удлиненные и точечные поры.

Сосуды имеют ограниченный срок деятельности. Они могут разрушаться в результате закупорки тиллами – выростами соседних паренхимных клеток, а также под действием центростремительных сил давления новых клеток древесины, образуемых камбием. В ходе эволюции сосуды подвергаются изменениям. Членики сосудов становятся короче и толще, косые поперечные перегородки сменяются прямыми, а лестничные перфорации – простыми.

Проводящие ткани нисходящего тока

К тканям нисходящего тока относятся ситовидные клетки и ситовидные трубки с клетками-спутницами. Ситовидные клетки имеют более древнее происхождение. Они встречаются у высших споровых растений и голосеменных. Это живые, удлиненные клетки с заостренными концами. В зрелом состоянии они содержат ядра в составе протопласта. В их боковых стенках, в местах соприкосновения смежных клеток, имеются мелкие сквозные перфорации, которые собраны группами и образуют ситовидные поля, через которые осуществляется передвижение веществ.

Ситовидные трубки состоят из вертикального ряда удлиненных клеток, разделенных между собой поперечными стенками и называемыми ситовидными пластинками, в которых расположены ситовидные поля. Если ситовидная пластинка обладает одним ситовидным полем, она считается простой, а если несколькими – то сложной. Ситовидные поля образуются многочисленными сквозными отверстиями – ситовидными перфорациями небольшого диаметра. Через эти перфорации из одной клетки в другую проходят плазмодесмы. На стенках перфораций размещается полисахарид каллоза, которая уменьшает просвет перфораций. По мере старения ситовидной трубки каллоза полностью закупоривает перфорации и трубка прекращает работу.

При формировании ситовидной трубки в образующих их клетках синтезируется специальный флоэмный белок (Ф-белок) и развивается крупная вакуоль. Она оттесняет цитоплазму и ядро к стенке клетки. Затем мембрана вакуоли разрушается и внутреннее пространство клетки заполняется смесью цитоплазмы и клеточного сока. Тельца Ф-белка теряют отчетливые очертания, сливаются, образуя тяжи около ситовидных пластинок. Их фибриллы проходят через перфорации из одного членика ситовидной трубки в другой. К членикам ситовидной трубки плотно прилегают одна или две клетки-спутницы, которые имеют удлиненную форму, тонкие стенки и живую цитоплазму с ядром и многочисленными митохондриями. В митохондриях синтезируется АТФ, необходимая для транспорта веществ по ситовидным трубкам. В стенках клеток-спутниц имеется большое количество пор с плазмадесмами, которое почти в 10 раз превышает их количество в других клетках мезофилла листа. Поверхность протопласта этих клеток значительно увеличена за счет многочисленных складок, образуемых плазмалеммой.

Скорость передвижения ассимилятов по ситовидным трубкам значительно превышает скорость свободной диффузии веществ и достигает 50 – 150 см/час, что указывает на активный транспорт веществ с использованием энергии АТФ.

Продолжительность работы ситовидных трубок у многолетних двудольных составляет 1 – 2 года. На смену им камбий постоянно образует новые проводящие элементы. У однодольных, лишенных камбия, ситовидные трубки существуют гораздо дольше.

Проводящие пучки

Проводящие ткани располагаются в органах растений в виде продольных тяжей, образуя проводящие пучки. Различают четыре типа проводящих пучков: простые, общие, сложные и сосудисто-волокнистые.

Простые пучки состоят из одного типа проводящих тканей. Например, в краевых частях листовых пластинок многих растений встречаются небольшие по диаметру пучки из сосудов и трахеид, а в цветоносных побегах у лилейных – из одних лишь ситовидных трубок.

Общие пучки образуются трахеидами, сосудами и ситовидными трубками. Иногда этот термин используется для обозначения пучков метамера, которые проходят в междоузлии и являются листовыми следами. В состав сложных пучков входят проводящие и паренхимные ткани. Наиболее совершенными, многообразными по строению и местоположению являются сосудисто-волокнистые пучки.

Сосудисто-волокнистые пучки характерны для многих высших споровых растений и голосеменных. Однако они наиболее типичны для покрытосеменных. В таких пучках выделяются функционально разные части – флоэма и ксилема. Флоэма обеспечивает отток ассимилятов из листа и передвижение их в места использования или запасания. По ксилеме вода и растворенные в ней вещества передвигаются из корневой системы в лист и другие органы. Объем ксилемной части в несколько раз превосходит объем флоэмной, поскольку объем поступающей в растение воды превышает объем образуемых ассимилятов, так как значительная часть воды испаряется растением.

Разнообразие сосудисто-волокнистых пучков определяется их происхождением, гистологическим составом и местонахождением в растении. Если пучки образуются из прокамбия и завершают своё развитие по мере использования запаса клеток образовательной ткани, как у однодольных, они называются закрытыми для роста. В отличие от них, у двудольных открытые пучки не ограничены в росте, поскольку они формируются камбием и увеличиваются в диаметре на протяжении всей жизни растения. В состав сосудисто-волокнистых пучков кроме проводящих могут входить основные и механические ткани. Например, у двудольных флоэма образуется ситовидными трубками (проводящая ткань восходящего тока), лубяной паренхимой (основная ткань) и лубяными волокнами (механическая ткань). В состав ксилемы входят сосуды и трахеиды (проводящая ткань нисходящего тока), древесинная паренхима (основная ткань) и древесинные волокна (механическая ткань). Гистологический состав ксилемы и флоэмы генетически детерминирован и может быть использован в систематике растений для диагностики разных таксонов. Кроме того, степень развития составных частей пучков может изменяться под влиянием условий произрастания растений.

Известно несколько видов сосудисто-волокнистых пучков.

Закрытые коллатеральные проводящие пучки характерны для листьев и стеблей однодольных покрытосеменных. В них отсутствует камбий. Флоэма и ксилема располагаются бок-о-бок. Для них характерны некоторые конструктивные особенности. Так, у пшеницы, отличающейся С 3 -путём фотосинтеза, пучки образуются из прокамбия и имеют первичную флоэму и первичную ксилему. Во флоэме выделяют более раннюю протофлоэму и более позднюю по времени образования, но более крупноклеточную метафлоэму. Во флоэмной части отсутствуют лубяная паренхима и лубяные волокна. В ксилеме первоначально образуются более мелкие сосуды протоксилемы, расположенные в одну линию перпендикулярно к внутренней границе флоэмы. Метаксилема представлена двумя крупными сосудами, расположенными рядом с метафлоэмой перпендикулярно цепочке сосудов протоксилемы. В этом случае сосуды располагаются Т-образно. Известно также V-, Y- и È-образное расположение сосудов. Между сосудами метаксилемы в 1 – 2 ряда расположена мелкоклеточная склеренхима с утолщенными стенками, которые по мере развития стебля пропитываются лигнином. Эта склеренхима отделяет зону ксилемы от флоэмы. По обе стороны от сосудов протоксилемы располагаются клетки древесинной паренхимы, которые, вероятно, выполняют трансфузионную роль, поскольку при переходе пучка из междоузлия в листовую подушку стеблевого узла они участвуют в образовании передаточных клеток. Вокруг проводящего пучка стебля пшеницы располагается склеренхимная обкладка, лучше развитая со стороны протоксилемы и протофлоэмы, около боковых сторон пучка клетки обкладки располагаются в один ряд.

У растений с С 4 -типом фотосинтеза (кукуруза, просо и др.) в листьях вокруг закрытых проводящих пучков располагается обкладка из крупных клеток хлоренхимы.

Открытые коллатеральные пучки характерны для стеблей двудольных. Наличие слоя камбия между флоэмой и ксилемой, а также отсутствие склеренхимной обкладки вокруг пучков обеспечивает их длительный рост в толщину. В ксилемной и флоэмной частях таких пучков имеются клетки основной и механической тканей.

Открытые коллатеральные пучки могут быть образованы двумя путями. Во-первых, это пучки, первично образуемые прокамбием. Затем в них из клеток основной паренхимы развивается камбий, производящий вторичные элементы флоэмы и ксилемы. В результате пучки будут сочетать гистологические элементы первичного и вторичного происхождения. Такие пучки характерны для многих травянистых цветковых растений класса Двудольные, имеющих пучковый тип строения стебля (бобовые, розоцветные и др.).

Во-вторых, открытые коллатеральные пучки могут быть образованы только камбием и состоять из ксилемы и флоэмы вторичного происхождения. Они типичны для травянистых двудольных с переходным типом анатомического строения стебля (астровые и др.), а также для корнеплодов типа свёклы.

В стеблях растений ряда семейств (Тыквенные, Пасленовые, Колокольчиковые и др.) встречаются открытые биколлатеральные пучки, где ксилема с двух сторон окружена флоэмой. При этом наружный участок флоэмы, обращенный к поверхности стебля, развит лучше внутреннего, а полоска камбия, как правило, располагается между ксилемой и наружным участком флоэмы.

Концентрические пучки бывают двух типов. В амфикрибральных пучках, характерных для корневищ папоротников, флоэма окружает ксилему, в амфивазальных – ксилема кольцом расположена вокруг флоэмы (корневища ириса, ландыша и др.). Реже концентрические пучки встречаются у двудольных (клещевина).

Закрытые радиальные проводящие пучки образуются в участках корней, имеющих первичное анатомическое строение. Радиальный пучок входит в состав центрального цилиндра и проходит через середину корня. Его ксилема имеет вид многолучевой звезды. Между лучами ксилемы располагаются клетки флоэмы. Число лучей ксилемы в значительной мере зависит от генетической природы растений. Например, у моркови, свеклы, капусты и других двудольных ксилема радиального пучка имеет только два луча. У яблони и груши их может быть 3 – 5, у тыквы и бобов – ксилема четырехлучевая, а у однодольных – многолучевая. Радиальное расположение лучей ксилемы имеет приспособительное значение. Оно сокращает путь воды от всасывающей поверхности корня к сосудам центрального цилиндра.

У многолетних древесных растений и некоторых травянистых однолетников, например у льна, проводящие ткани располагаются в стебле, не образуя четко выраженных проводящих пучков. Тогда говорят о непучковом типе строения стебля.

Ткани, регулирующие радиальный транспорт веществ

К специфическим тканям, регулирующим радиальный транспорт веществ относятся экзодерма и эндодерма.

Экзодерма является наружным слоем первичной коры корня. Она образуется непосредственно под первичной покровной тканью эпиблемой в зоне корневых волосков и состоит из одного или нескольких слоёв плотно сомкнутых клеток с утолщенными целлюлозными оболочками. В экзодерме вода, поступившая в корень по корневым волоскам, испытывает сопротивление вязкой цитоплазмы и перемещается в целлюлозные оболочки клеток экзодермы, а затем выходит из них в межклетники среднего слоя первичной коры, или мезодермы. Это обеспечивает эффективное поступление воды в более глубокие слои корня.

В зоне проведения в корне однодольных, где клетки эпиблемы отмирают и слущиваются, экзодерма оказывается на поверхности корня. Её клеточные стенки пропитываются суберином и препятствуют поступлению воды из почвы в корень. У двудольных экзодерма в составе первичной коры слущивается при линьке корня и замещается перидермой.

Эндодерма, или внутренний слой первичной коры корня, располагается вокруг центрального цилиндра. Она образуется одним слоем плотно сомкнутых клеток неодинакового строения. Одни из них, именуемые пропускными, имеют тонкие оболочки и легко проницаемы для воды. По ним вода из первичной коры поступает в радиальный проводящий пучок корня. Другие клетки имеют специфические целлюлозные утолщения радиальных и внутренних тангентальных стенок. Эти утолщения, пропитанные суберином, называются поясками Каспари. Они непроницаемы для воды. Поэтому вода поступает в центральный цилиндр только через пропускные клетки. А поскольку поглощающая поверхность корня значительно превосходит суммарную площадь сечения пропускных клеток эндодермы, то при этом возникает корневое давление, которое является одним из механизмов поступления воды в стебель, лист и репродуктивные органы.

Эндодерма входит также в состав коры молодого стебля. У некоторых травянистых покрытосеменных она как и в корне может иметь пояски Каспари. Кроме того, в молодых стеблях эндодерма может быть представлена крахмалоносным влагалищем. Таким образом, эндодерма может регулировать транспорт воды в растении и запасать питательные вещества.

Понятие о стеле и её эволюции

Возникновению, развитию в онтогенезе и эволюционным структурным преобразованиям проводящей системы уделяется большое внимание, поскольку она обеспечивает взаимосвязь органов растений и с ней связана эволюция крупных таксонов.

По предложению французских ботаников Ф. Ван Тигема и А. Дулио (1886) совокупность первичных проводящих тканей вместе с расположенными между ними другими тканями и перициклом, прилегающим к коре, была названа стелой. В состав стелы может также входить сердцевина и образуемая на её месте полость, как, например, у мятликовых. Понятие «стела» соответствует понятию «центральный цилиндр». Стела корня и стебля функционально едина. Изучение стелы у представителей разных отделов высших растений привело к формированию стелярной теории.

Различают два основных типа стелы: протостелу и эустелу. Наиболее древней является протостела. Её проводящие ткани располагаются в середине осевых органов, причём в центре находится ксилема, окруженная сплошным слоем флоэмы. Сердцевина или полость в стебле отсутствуют.

Существует несколько эволюционно связанных между собой видов протостелы: гаплостела, актиностела и плектостела.

Исходным, примитивным видом является гаплостела. У неё ксилема имеет округлую форму поперечного сечения и окружена ровным непрерывным слоем флоэмы. Вокруг проводящих тканей одним – двумя слоями располагается перицикл. Гаплостела была известна у ископаемых риниофитов и сохранилась у некоторых псилотофитов (тмезиптер).

Более развитым видом протостелы является актиностела, в которой ксилема на поперечном сечении приобретает форму многолучевой звезды. Она обнаружена у ископаемого астероксилона и некоторых примитивных плауновидных.

Дальнейшее разобщение ксилемы на отдельные участки, расположенные радиально или параллельно друг к другу, привело к образованию плектостелы, характерной для стеблей плауновидных. У актиностелы и плектостелы флоэма по-прежнему окружает ксилему со всех сторон.

В ходе эволюции из протостелы возникла сифоностела, отличительной особенностью которой является трубчатое строение. В центре такой стелы располагается сердцевина или полость. В проводящей части сифоностелы появляются листовые щели, благодаря которым возникает непрерывная связь сердцевины с корой. В зависимости от способа взаимного расположения ксилемы и флоэмы сифоностела бывает эктофлойной и амфифлойной. В первом случае флоэма с одной, наружной, стороны окружает ксилему. Во втором – флоэма окружает ксилему с двух сторон, с наружной и внутренней.

При разделении амфифлойной сифоностелы на сеть или ряды продольных тяжей возникает рассеченная стела, или диктиостела, характерная для многих папоротниковидных. Её проводящая часть представлена многочисленными концентрическими проводящими пучками.

У хвощей из эктофлойной сифоностелы возникла артростела, которая имеет членистое строение. Она отличается наличием одной крупной центральной полости и обособленных проводящих пучков с протоксилемными полостями (каринальными каналами).

У цветковых растений на основе эктофлойной сифоностелы образовалась эустела, характерная для двудольных, и атактостела, типичная для однодольных. В эустеле проводящая часть состоит из обособленных коллатеральных пучков, имеющих круговое расположение. В центре стелы в стебле располагается сердцевина, которая с помощью сердцевинных лучей соединяется с корой. В атактостеле проводящие пучки имеют рассеянное расположение, между ними находятся паренхимные клетки центрального цилиндра. Такое расположение пучков скрывает трубчатую конструкцию сифоностелы.

Возникновение различных вариантов сифоностелы является важным приспособлением высших растений к увеличению диаметра осевых органов – корня и стебля.



Этот тип относится к сложным тканям, состоит из по-разному дифференцированных клеток. Кроме собственно проводящих элементов, в ткани присутствуют механические, выделительные и запасающие элементы. Проводящие ткани объединяют все органы растения в единую систему. Выделяют два типа проводящих тканей: ксилему и флоэму (греч.xylon - дерево; phloios - кора, лыко). Они имеют как структурные, так и функциональные различия.

Проводящие элементы ксилемы образованы мертвыми клетками. По ним осуществляется дальний транспорт воды и растворённых в ней веществ от корня к листьям. Проводящие элементы флоэмы сохраняют живой протопласт. По ним осуществляется дальний транспорт от фотосинтезирующих листьев к корню.

Обычно ксилема и флоэма располагаются в теле растения в определённом порядке, образуя слои или проводящие пучки. В зависимости от строения различают несколько типов проводящих пучков, которые характерны для определённых групп растений. В коллатеральном открытом пучке между ксилемой и флоэмой находится камбий, обеспечивающий вторичный рост. В биколлатеральном открытом пучке флоэма располагается относительно ксилемы с двух сторон. Закрытые пучки не содержат камбия, а отсюда к вторичному утолщению не способны. Можно встретить ещё два типа концентрических пучков, где или флоэма окружает ксилему, или ксилема - флоэму.

Ксилема (древесина). Развитие ксилемы у высших растений связано с обеспечением водного обмена. Так как чрез эпидерму постоянно выводится вода, такое же количество влаги должно поглощаться растением и добавляться к органам, которые осуществляют транспирацию. Следует учитывать, что наличие живого протопласта в проводящих воду клетках сильно замедляло бы транспорт, мёртвые клетки здесь оказываются более функциональными. Однако мёртвая клетка не обладает тургесцентностью, в связи с этим механическими свойствами должна обладать оболочка. Примечание: тургесценция - состояния растительных клеток, тканей и органов, при кото?ы? они становятся упругими вследствие давления содержимого клеток на их эластичные оболочки. Действительно, проводящие элементы ксилемы состоят их вытянутых вдоль оси органа мертвых клеток с толстыми одревесневшими оболочками.

Первоначально ксилема образуется из первичной меристемы - прокамбия, расположенного на верхушках осевых органов. Вначале дифференцируется протоксилема, затем метаксилема. Известно три типа формирования ксилемы. При экзархном типе элементы протоксилемы сначала появляются на периферии пучка прокамбия, затем в центре возникают элементы метаксилемы. Если процесс идёт в противоположном направлении (т.е. от центра к периферии), то это эндархный тип. При мезархном типе ксилема закладывается в центре прокамбиального пучка, после чего откладывается как по направлению к центру, так и к периферии.

Для корня характерен экзархный тип закладки ксилемы, для стеблей - эндархный. У низкоорганизованных растений способы формирования ксилемы очень разнообразны и могут служить систематическими характеристиками.

У некоторы? растений (например, однодольных) все клетки прокамбия дифференцируются в проводящие ткани, которые не способны к вторичному утолщению. У других же форм (например, древесных) между ксилемой и флоэмой остаются латеральные меристемы (камбий). Эти клетки способны делиться, обновляя ксилему и флоэму. Такой процесс называется вторичным ростом. У многих, произрастающих в сравнительно стабильных климатических условиях, растений, рост идёт постоянно. У форм, приспособленных к сезонным изменениям климата, - периодически.

Основные этапы дифференциации клеток прокамбия. Её клетки с тонкими оболочками, не препятствующими их растяжению при росте органа. Затем протопласт начинает откладывать вторичную оболочку. Но этот процесс имеет выраженные особенности. Вторичная оболочка откладывается не сплошным слоем, что не позволило бы клетке растягиваться, а в виде колец или по спирали. Удлинение клетки при этом не затруднено. У молодых клеток кольца или витки спирали расположены близко друг к другу. У зрелых клеток расходятся в результате растяжения клетки. Кольчатые и спиральные утолщения оболочки росту не препятствуют, однако механически они уступают оболочкам, где вторичное утолщение образует сплошной слой. В связи с этим после прекращения роста в ксилеме формируются элементы со сплошной одревесневшей оболочкой (метаксилемой). Следует отметить, что вторичное утолщение здесь не кольчатое или спиральное, а точечное, лестничное, сетчатое.Её клетки растягиваться, не способны и в течение нескольких часов отмирают. Этот процесс у расположенных поблизости клеток происходит скоординировано. В цитоплазме появляется большое количество лизосом. Затем распадаются, а находящиеся в них ферменты разрушают протопласт. При разрушении поперечных стенок расположенные цепочкой друг над другом клетки образуют полый сосуд. Большинство покрытосеменных растений и некоторы? папоротникообразных обладают сосудами.

Проводящую клетку не образующую сквозных перфораций в своей стенке, называют трахеидой. Передвижение воды по трахеидам идёт с меньшей скоростью, чем по сосудам. Дело в том, что у трахеидов нигде не прерывается первичная оболочка. Между собой трахеиды сообщатся посредством пор. Следует уточнить, что у растений пора представляет собой лишь углубление во вторичной оболочке до первичной оболочки и никаких сквозных перфораций между трахеидами не имеется.

Чаще всего встречаются окаймлённые поры. У них канал, обращённый в полость клетки, образует расширение - камеру поры. Поры большинства хвойных растений на первичной оболочке имеют утолщение - торус, который представляет собой своеобразный клапан и способен регулировать интенсивность транспорта воды. Смещаясь, торус перекрывает ток воды через пору, но после этого вернуться в прежнее положение он уже не может, совершая одноразовое действие.

Поры бывают более или менее округлыми, вытянутыми перпендикулярно вытянутой оси (группа этих пор напоминает лестницу, в связи с этим такую пористость называют лестничной). Через поры транспорт осуществляется как в продольном, так и в поперечном направлении. Поры присутствуют не только у трахеид, но и отдельных клеток сосудов, которые образуют сосуд.

С точки зрения эволюционной теории трахеиды представляют собой первую и основную структуру, осуществляющую проведение воды в теле высших растений. Считают, что сосуды возникли из трахеид вследствие лизиса поперечных стенок между ними. Большинство папоротникообразных и голосеменных сосудов не имеют. Передвижение воды у них происходит посредством трахеид.

В процессе эволюционного развития сосуды возникали у разных групп растений неоднократно, но наиболее важное функциональное значение они приобрели у покрытосеменных, у кото?ы? они имеются наряду с трахеидами. Считают, что обладание более совершенным механизмом транспорта помогло им не только выжить, но и достигнуть значительного разнообразия форм.

Ксилема является сложной тканью, кроме водопроводящих элементов в ней содержатся и другие. Механические функции выполняют волокна либриформа (лат. liber - луб, forma - форма). Присутствие дополнительных механических структур важно, так как, несмотря на утолщения, стенки водопроводящих элементов всё же слишком тонки. Они не способны самостоятельно удерживать большую массу многолетнего растения. Волокна развивались из трахеид. Для них характерны меньшие размеры, одревесневшие (лигнифицированные) оболочки и узкие полости. На стенке можно обнаружить, лишенные окаймления поры. Эти волокна проводить воду не могут, основная их функция опорная.

В ксилеме имеются и живые клетки. Их масса может достигать 25% от общего объема древесины. Так как эти клетки имеют округлую форму, то их называют паренхимой древесины. В теле растения паренхима располагается двумя способами. В первом случае клетки располагаются в виде вертикальных тяжей - это тяжевая паренхима. В другом случае паренхима образует горизонтальные лучи. Они называютсясердцевинными лучами, так как соединяют сердцевину и кору. Сердцевина выполняет ряд функций, в том числе и запасание веществ.

Флоэма (луб). Это сложная ткань, так как образована разнотипными клетками. Основные клетки проводящие, называются ситовидными элементами. Проводящие элементы ксилемы образованы мёртвыми клетками, а у флоэмы они в течение периода функционирования сохраняют живой, хотя и сильно изменённый протопласт. По флоэме происходит отток пластических веществ от фотосинтезирующих органов. Способностью проводить органические вещества обладают все живые клетки растений. А отсюда, если ксилему можно обнаружить только у высших растений, то транспорт органических веществ между клетками осуществляется и у низших растений.

Ксилема и флоэма развиваются из апикальных меристем. На первом этапе в прокамбиальном тяже формируется протофлоэма. По мере роста окружающих тканей она растягивается, и, когда рост завершается, вместо протофлоэмы формируется метафлоэма.

У различных групп высших растений можно встретить два типа ситовидных элементов. У папоротникообразных и голосеменных он представлены ситовидными клетками. Ситовидные поля в клетках рассеяны по боковым стенкам. В протопласте сохраняется несколько деструктированное ядро.

У покрытосеменных ситовидные элементы называются ситовидными трубками. Они сообщаются между собой через ситовидные пластинки. В зрелых клетках ядра отсутствуют. Однако рядом с ситовидной трубкой располагается клетка-спутница, образующаяся вместе с ситовидной трубкой в результате митотического деления общей материнской клетки (рис.38). Клетка-спутница имеет более плотную цитоплазму с большим количеством активных митохондрий, а также полноценно функционирующее ядро, огромное количество плазмодесм (в десять раз больше, чем у других клеток). Клетки-спутницы оказывают воздействие на функциональную активность безъядерных ситовидных клеток трубок.

Структура зрелых ситовидных клеток имеет некоторые особенности. Отсутствует вакуоль, в связи с этим цитоплазма сильно разжижается. Может отсутствовать (у покрытосеменных растений) или находиться в сморщенном функционально малоактивном состоянии ядро. Рибосомы и комплекс Гольджи также отсутствуют, но хорошо развит эндоплазматический ретикулум, который не только пронизывает цитоплазму, но и переходит в соседние клетки через поры ситовидных полей. Хорошо развитые митохондрии и пластиды встречаются в изобилии.

Между клетками транспорт веществ идет через отверстия, расположенные на клеточных оболочках. Такие отверстия называются порами, но в отличие от пор трахеид, являются сквозными. Предполагают, что они представляют собой сильно расширенные плазмодесмы, на стенках, которы? откладывается полисахарид каллоза. Поры располагаются группами, образуя ситовидные поля. У примитивных форм ситовидные поля беспорядочно рассеяны по всей поверхности оболочки, у более совершенных покрытосеменных растений располагаются на примыкающих друг к другу концах соседних клеток, образуя ситовидную пластинку. Если на ней находится одно ситовидное поле, её называют простой, если несколько - сложной.

Скорость передвижения растворов по ситовидным элементам составляет до 150см в час. Это в тысячу раз превышает скорость свободной диффузии. Вероятно, имеет место активный транспорт, а многочисленные митохондрии ситовидных элементов и клеток-спутниц поставляют для этого необходимую АТФ.

Срок деятельности ситовидных элементов флоэмы зависит от наличия латеральных меристем. Если они имеются, то ситовидные элементы работают в течение всей жизни растения.

Кроме ситовидных элементов и клеток-спутниц, во флоэме присутствуют лубяные волокна, склереиды и паренхима.

Поделиться