Естественные и искусственные источники света: примеры. Использование искусственных источников света

Свет всегда окружает нас в природе. И солнечный свет, и лунный свет, и звездный свет являются наиболее важными источниками света к жизни человека. Но, также, из-за потребности в дополнительном свете, люди научились собственными силами создавать свет. Понимание фундаментального различия между естественным и искусственным светом является отправной точкой в описании естественных и искусственных источников света. Природные источники света существуют в природе и находятся вне контроля людей. Они включают в себя солнечный свет, лунный свет, свет звезд, различных растительных и животных источников, радиолюминесценцию, и, конечно, огонь.

Искусственными источниками света могут управлять люди. Примеры таких источников – пламя от сгорающих поленьев, языки пламени масляной или газовой горелки, электрические лампы, свет от фотохимических реакций, и других различных реакций, например свет от реакций со взрывчатыми веществами.
Из-за их очевидных преимуществ с точки зрения доступности, безопасности, чистоты, и возможности удаленного управления, электрические лампы вытеснили почти все другие искусственные источники освещения в жизни человека. Однако, так как энергия, необходимая для работы таких искусственных источников света обеспечивается в основном при потреблении природных ресурсов, мы приходим к мысли о том, что необходимо в максимально возможной степени использовать природные источники света.

Эксплуатации природных источников света остается одной из самых больших проблем в освещении.

Дизайнеры и архитекторы прикладывают огромные усилия в целях максимального использования источников света такого типа.

А вы знаете, какими характеристиками обладают ? О них вы сможете узнать все из нашей статьи.

А светодиодные источники ультрафиолетового излучения можно прочитать . Попробуйте разобраться, в каких областях лежит применение таких источников?

С практической точки зрения, источники света могут быть классифицированы с точки зрения качеств света, который они производят . Эти качества имеют решающее значение для результата освещения и должны быть в первую очередь учтены при выборе источника для освещения.

Наиболее естественный свет исходит от солнца, также естественен и лунный свет. Его происхождение делает его абсолютно чистым, и он не потребляет природные ресурсы. В то же самое время искусственные источники для преобразования накопленной энергии в световую энергию обычно требуют потребления природных ресурсов, таких как ископаемое топливо. Электрическое освещение с одной стороны превосходит по всем параметрам обыкновенное пламя от сгорание древесины, газа, нефти, но и является источником загрязнения. В то же самое время, электричество может быть получено из природных источников энергии, таких как ветер, гидро-, геотермальная и солнечная энергии.
Принцип работы электрической лампы накаливания определяет практически все параметры света создающегося такой лампой. В общем и целом, лампы накаливания генерируют свет по принципу накаливания, при котором металл нагревается до тех пор, пока он не начинает светиться.
В это же время большинство других типов ламп излучают свет посредством сложной системы химических реакций, при протекании которых электрическая энергия превращается в световую энергию.

При этом выделение тепловой энергии всегда является побочным эффектом.

Эти процессы протекают в таких лампах в отношении генерируемого света обычно более эффективно, чем в лампах накала — за счет сложности и других ограничений. Например, флуоресцентная лампа генерирует свет при подачи электрического напряжения в газе, который в свою очередь испускает ультрафиолетовое излучение, которое окончательно преобразуется в видимый свет особым веществом, которое и обеспечивает необходимое свечение. Этот процесс генерирует свет примерно на 400 процентов более эффективно , чем в случае с обычными лампами накаливания.

Для искусственного освещения применяют электрические лампы двух типов -- лампы накаливания (ЛН) и газоразрядные лампы (ГЛ).

Лампы накаливания относятся к источникам света теплового излучения. Видимое излучение (свет) в них получается в результате нагрева электрическим током вольфрамовой нити.

В газоразрядных лампах видимое излучение возникает в результате электрического разряда в атмосфере инертных газов или паров металлов, которыми заполняется колба лампы. Газоразрядные лампы называют люминесцентными, т. к. изнутри колбы покрыты люминофором, который под действием ультрафиолетового излучения, излучаемого электрическим разрядом, светится, преобразуя тем самым невидимое ультрафиолетовое излучение в свет.

Лампы накаливания наиболее широко распространены в быту из-за своей простоты, надежности и удобства эксплуатации. Находят они применение и на производстве, организациях и учреждениях, но в значительно меньшей степени. Это связано с их существенными недостатками: низкой светоотдачей -- от 7 до 20 лм/Вт (светоотдача лампы -- это отношение светового потока лампы к ее электрической мощности); небольшим сроком службы -- до 2500 часов; преобладанием в спектре желтых и красных лучей, что сильно отличает спектральный состав искусственного света от солнечного. В маркировке ламп накаливания буква В обозначает вакуумные лампы, Г -- газонаполненные, К -- лампы с криптоновым наполнением, Б -- биспиральные лампы.

Газоразрядные лампы получили наибольшее распространение на производстве, в организациях и учреждениях прежде всего из-за значительно большей светоотдачи (40...ПО лм/Вт) и срока службы (8000...12000 часов). Из-за этого газоразрядные лампы в основном применяются для освещения улиц, иллюминации, световой рекламы. Подбирая сочетание инертных газов, паров металлов, заполняющих колбы ламп, и люминоформа, можно получить свет практически любого спектрального диапазона -- красный, зеленый, желтый и т. д. Для освещения в помещениях наибольшее распространение получили люминесцентные лампы дневного света, колба которых заполнена парами ртути. Свет, излучаемый такими лампами, близок по своему спектру к солнечному свету.

К газоразрядным относятся различные типы люминесцентных ламп низкого давления с разным распределением светового потока по спектру: лампы белого света (ЛБ); лампы холодно-белого света

(ЛХБ); лампы с улучшенной цветопередачей (ЛДЦ); лампы тепло-белого света (ЛТБ); лампы, близкие по спектру к солнечному свету (ЛЕ); лампы холодно-белого света улучшенной цветопередачи (ЛХБЦ).

К газоразрядным лампам высокого давления относятся: дуговые ртутные лампы высокого давления с исправленной цветностью (ДРЛ); ксеноновые (ДКсТ), основанные на излучении дугового разряда в тяжелых инертных газах; натриевые высокого давления (ДНаТ); металлогалогенные (ДРИ) с добавкой йодидов металлов.

Лампы ЛЕ, ЛДЦ применяются в случаях, когда предъявляются высокие требования к определению цвета, в остальных случаях -- лампы ЛБ, как наиболее экономичные. Лампы ДРЛ рекомендуются для производственных помещений, если работа не связана с различением цветов (в высоких цехах машиностроительных предприятий и т. п.), и наружного освещения. Лампы ДРИ имеют высокую световую отдачу и улучшенную цветность, применяются для освещения помещений большой высоты и площади.

Источники света обладают различной яркостью. Максимальная переносимая человеком яркость при прямом наблюдении составляет 7500 кд/м2.

Однако газоразрядные лампы наряду с преимуществами перед лампами накаливания обладают и существенными недостатками, которые пока ограничивают их распространение в быту.

Это пульсация светового потока, которая искажает зрительное восприятие и отрицательно воздействует на зрение.

При освещении газоразрядными лампами может возникнуть стробоскопический эффект, заключающийся в неправильном восприятии скорости движения предметов. Опасность стробоскопического эффекта при использовании газоразрядных ламп состоит в том, что вращающиеся части механизмов могут показаться неподвижными и стать причиной травматизма. Пульсации освещенности вредны и при работе с неподвижными поверхностями, вызывая быстрое утомление зрения и головную боль.

Ограничение пульсаций до безвредных значений достигается равномерным чередованием питания ламп от различных фаз трехфазной сети, специальными схемами подключения. Однако это усложняет систему освещения. Поэтому люминесцентные лампы не нашли широкого применения в быту. К недостаткам газоразрядных ламп относится: длительность их разгорания, зависимость их работоспособности от температуры окружающей среды, создание радиопомех.

Другой причиной, по-видимому, является следующее обстоятельство. Психологическое и отчасти физиологическое воздействие на человека цветности излучения источников света несомненно в значительной степени связано с теми световыми условиями, к которым человечество приспособилось за время своего существования. Далекое и холодное голубое небо, создающее в течение большей части светового дня высокие освещенности, вечером -- близкий и горячий желто-красный костер, а затем пришедшие ему на смену, но аналогичные по цветности «лампы сгорания», создающие, однако, низкие освещенности, -- таковы световые режимы, приспособлением к которым, вероятно, объясняются следующие факты. У человека наблюдается более работоспособное состояние днем при свете преимущественно холодных оттенков, а вечером при теплом красноватом свете лучше отдыхать. Лампы накаливания дают теплый красновато-желтый цвет и способствуют успокоению и отдыху, лю-минесцентные лампы, наоборот, создают холодный белый цвет, который возбуждает и настраивает на работу.

От применяемого типа источников света зависит правильность цветопередачи. Например, темно-синяя ткань при свете ламп накаливания кажется черной, желтый цветок -- грязно-белым. Т. е. лампы накаливания искажают правильную цветопередачу. Однако есть предметы, которые люди привыкли видеть преимущественно вечером при искусственном освещении, например, золотые украшения «естественнее» выглядят при свете ламп накаливания, чем при свете люминесцентных ламп. Если при выполнении работы важна правильность цветопередачи -- например, на уроках рисования, в полиграфической промышленности, картинных галереях и т. д. -- лучше применять естественное освещение, а при его недостаточности -- искусственное освещение люминесцентных ламп.

Таким образом, правильный выбор цвета для рабочего места значительно способствует повышению производительности труда, безопасности и общему самочувствию работников. Отделка поверхностей и оборудования, находящегося в рабочей зоне, точно также способствует созданию приятных зрительных ощущений и приятной рабочей обстановки.

Обычный свет состоит из электромагнитных излучений с различными длинами волн, каждое из которых соответствует определенному диапазону видимого спектра. Смешивая красный, желтый и голубой свет, мы можем получить большинство видимых цветов, включая белый. Наше восприятие цвета предмета зависит от цвета света, которым он освещен и от того, каким образом сам предмет отражает цвет.

Источники света подразделяются на следующие три категории в зависимости от цвета света, который они излучают:

  • *«теплого» цвета (белый красноватый свет) -- рекомендуются для освещения жилых помещений;
  • *промежуточного цвета (белый свет) -- рекомендуются для освещения рабочих мест;
  • *«холодного» цвета (белый голубоватый свет) -- рекомендуются при выполнении работ, требующих высокого уровня освещенности или для жаркого климата.

Таким образом, важной характеристикой источников света является цвет светового излучения. Для характеристики цвета излучения введено понятие цветовой температуры.

Цветовая температура- такая температура черного тела, при которой его излучение имеет такую же цветность, как и рассматриваемое излучение. Действительно при нагреве черного тела его цвет изменяется от теплых оранжево-красных до холодных белых тонов. Цветовая температура измеряется в градусах Кельвина (°К). Связь между градусами по шкале Цельсия и по шкале Кельвина следующая: °К = °С + 273. Например, О °С соответствует 273 °К.

Введение

1. Виды искусственного освещения

2 Функциональное назначение искусственного освещения

3 Источники искусственного освещения. Лампы накаливания

3.1Типы ламп накаливания

3.2 Конструкция лампы накаливания

3.3 Преимущества и недостатки ламп накаливания

4. Газоразрядные лампы. Общая характеристика. Область применения. Виды

4.1 Натриевая газоразрядная лампа

4.2 Люминесцентная лампа

4.3 Ртутная газоразрядная лампа

Список литературы


Введение

Назначение искусственного освещения – создать благоприятные условия видимости, сохранить хорошее самочувствие человека и уменьшить утомляемость глаз. При искусственном освещении все предметы выглядят иначе, чем при дневном свете. Это происходит потому, что изменяется положение, спектральный состав и интенсивность источников излучения.

История искусственного освещения началась тогда, когда человек стал использовать огонь. Костер, факел и лучина стали первыми искусственными источниками света. Затем появились масляные лампы и свечи. В начале XIX века научились выделять газ и очищенные нефтепродукты, появилась керосиновая лампа, которая используется по сегодняшний день.

При зажигании фитиля возникает светящееся пламя. Пламя испускает свет только тогда, когда твердое тело нагревается этим пламенем. Не горение порождает свет, а лишь вещества, доведенные до раскаленного состояния, излучают свет. В пламени свет излучают раскаленные частички сажи. В этом можно убедиться, если поместить стекло над пламенем свечи или керосиновой лампы.

На улицах Москвы и Петербурга осветительные масляные фонари появилось в 30-х годах XVIII века. Затем масло заменили спиртово-скипидарной смесью. Позднее, в качестве горючего вещества, стали использовать керосин и, наконец, светильный газ, который получали искусственным путем. Световая отдача таких источников была очень мала из-за низкой цветовой температуры пламени. Она не превышала 2000К.

По цветовой температуре искусственный свет сильно отличается от дневного, и это различие давно было замечено по изменению цвета предметов при переходе от дневного к вечернему искусственному освещению. В первую очередь было замечено изменение цвета одежды. В ХХ веке с широким распространением электрического освещения изменение цвета при переходе к искусственному освещению уменьшилось, но не исчезло.

Сегодня редкий человек знает о заводах, производивших светильный газ. Газ получали при нагревании каменного угля в ретортах. Реторты – это большие металлические или глиняные полые сосуды, которые наполняли углем и нагревали в печи. Выделившийся газ очищали и собирали в сооружениях для хранения светильного газа – газгольдерах.

Более ста лет назад, в 1838 году, «Общество освещения газом Санкт-Петербурга» построило первый газовый завод. К концу XIX века почти во всех крупных городах России появились газгольдеры. Газом освещали улицы, железнодорожные станции, предприятия, театры и жилые дома. В Киеве инженером А.Е.Струве газовое освещение было устроено в 1872году.

Создание электрогенераторов постоянного тока с приводом от паровой машины позволило широко использовать возможности электричества. В первую очередь изобретатели позаботились об источниках света и обратили внимание на свойства электрической дуги, которую впервые наблюдал Василий Владимирович Петров в 1802 году. Ослепительно яркий свет позволял надеяться, что люди смогут отказаться от свечей, лучины, керосиновой лампы и даже газовых фонарей.

В дуговых светильниках приходилось постоянно пододвигать поставленные «носами» друг к другу электроды – они достаточно быстро выгорали. Сначала их сдвигали вручную, затем появились десятки регуляторов, самым простым из которых был регулятор Аршро. Светильник состоял из неподвижного положительного электрода, закрепленного на кронштейне, и подвижного отрицательного, соединенного с регулятором. Регулятор состоял из катушки и блока с грузом.

При включении светильника через катушку протекал ток, сердечник втягивался в катушку и отводил отрицательный электрод от положительного. Дуга поджигалась автоматически. При уменьшении тока втягивающее усилие катушки уменьшалось и отрицательный электрод поднимался под действием груза. Широкого распространения эта и другие системы не получили из-за низкой надежности.

В 1875 году Павел Николаевич Яблочков предложил надежное и простое решение. Он расположил угольные электроды параллельно, разделив их изолирующим слоем. Изобретение имело колоссальный успех, и «свеча Яблочкова» или «Русский свет» нашел широкое распространение в Европе.

Искусственное освещение предусматривается в помещениях, в которых недостаточно естественного света, или для освещения помещения в часы суток, когда естественная освещенность отсутствует.

1.Виды искусственного освещения

Искусственное освещение может быть общим (все производственные помещения освещаются однотипными светильниками, равномерно расположенными над освещаемой поверхностью и снабженными лампами одинаковой мощности) и комбинированным (к общему освещению добавляется местное освещение работах мест светильниками, находящимися у аппарата, станка, приборов и т. д.). Использование только местного освещения недопустимо, так как резкий контраст между ярко освещенными и неосвещенными участками утомляет глаза, замедляет процесс работы и может послужить причиной несчастных случаев аварий.

2.Функциональное назначение искусственного освещения

По функциональному назначению искусственное освещение подразделяется на рабочее , дежурное , аварийное .

Рабочее освещение обязательно во всех помещениях и на освещаемых территориях для обеспечения нормальной работы людей и движения транспорта.

Дежурное освещение включается во вне рабочее время.

Аварийное освещение предусматривается для обеспечения минимальной освещенности в производственном помещении на случай внезапного отключения рабочего освещения.

В современных многопролетных одноэтажных зданиях без световых фонарей с одним боковым остеклением в дневное время суток применяют одновременно естественное и искусственное освещение (совмещенное освещение). Важно, чтобы оба вида освещения гармонировали одно с другим. Для искусственного освещения в этом случае целесообразно использовать люминесцентные лампы.

3. Источники искусственного освещения. Лампы накаливания.

В современных осветительных установках, предназначенных для освещения производственных помещений, в качестве источников света применяют лампы накаливания, галогенные и газоразрядные.

Лампа накаливания - электрический источник света, светящимся телом которого служит так называемое тело накала (тело накал- проводник, нагреваемый протеканием электрического тока до высокой температуры). В качестве материала для изготовления тела накала в настоящее время применяется практически исключительно вольфрам и сплавы на его основе. В конце XIX - первой половине XX в. Тело накала изготавливалось из более доступного и простого в обработке материала - углеродного волокна.

3.1 Типы ламп накаливания

Промышленность выпускает различные типы ламп накаливания:

вакуумные , газонаполненные (наполнитель смесь аргона и азота), биспиральные , с криптоновым наполнением .

3.2 Конструкция лампы накала

Рис.1 Лампа накаливания

Конструкция современной лампы. На схеме: 1 - колба; 2 - полость колбы (вакуумированная или наполненная газом); 3 - тело накала; 4, 5 - электроды (токовые вводы); 6 - крючки-держатели тела накала; 7 - ножка лампы; 8 - внешнее звено токоввода, предохранитель; 9 - корпус цоколя; 10 - изолятор цоколя (стекло); 11 - контакт донышка цоколя.

Конструкции лампы накала весьма разнообразны и зависят от назначения конкретного вида ламп. Однако общими для всех ламп накала являются следующие элементы: тело накала, колба, токовводы. В зависимости от особенностей конкретного типа лампы могут применяться держатели тела накала различной конструкции; лампы могут изготавливаться бесцокольными или с цоколями различных типов, иметь дополнительную внешнюю колбу и иные дополнительные конструктивные элементы.

3.3 Преимущества и недостатки ламп накаливания

Преимущества:

Малая стоимость

Небольшие размеры

Ненужность пускорегулирующей аппаратуры

При включении они зажигаются практически мгновенно

Отсутствие токсичных компонентов и как следствие отсутствие необходимости в инфраструктуре по сбору и утилизации

Возможность работы как на постоянном токе (любой полярности), так и на переменном

Возможность изготовления ламп на самое разное напряжение (от долей вольта до сотен вольт)

Отсутствие мерцания и гудения при работе на переменном токе

Непрерывный спектр излучения

Устойчивость к электромагнитному импульсу

Возможность использования регуляторов яркости

Нормальная работа при низкой температуре окружающей среды

Недостатки:

Низкая световая отдача

Относительно малый срок службы

Резкая зависимость световой отдачи и срока службы от напряжения

Цветовая температура лежит только в пределах 2300-2900 K, что придаёт свету желтоватый оттенок

Лампы накаливания представляют пожарную опасность. Через 30 минут после включения ламп накаливания температура наружной поверхности достигает в зависимости от мощности следующих величин: 40 Вт - 145°C, 75 Вт - 250°C, 100 Вт - 290°C, 200 Вт - 330°C. При соприкосновении ламп с текстильными материалами их колба нагревается еще сильнее. Солома, касающаяся поверхности лампы мощностью 60 Вт, вспыхивает примерно через 67 минут.

Световой коэффициент полезного действия ламп накаливания, определяемый как отношение мощности лучей видимого спектра к мощности потребляемой от электрической сети, весьма мал и не превышает 4%

Приветствую вас на своем блоге вновь. С вами на связи, Тимур Мустаев. Хочу поздравить всех мусульман со священным праздником Курбан Байрам, пожелать чистого неба над головой, искренней любви и здоровья! Берегите близких вам людей!

Сегодня мы рассмотрим искусственные и естественные источники света. Поскольку важным аспектом фотографии является освещение, без которого съемка вообще невозможна. Приступим к разбору понятий.

Источники подразделяются на два вида:

  1. Естественные;
  2. Искусственные.

Естественное освещение

Источники естественного освещения:

  • Солнце;
  • Луна замещает солнце ночью;
  • Биолюминесценция – свечение живых организмов;
  • Атмосферные электрические заряды, например, гроза.

Первые два источника являются обыденными и постоянными, два последующих могут служить фотографу только в особых условиях.

Естественное освещение является менее контролируемым, поскольку зависит от многих факторов:

1. Погода

  • Солнечная

Все знают, что в солнечный день не стоит фотографировать, так как в результате фотографии будут иметь жесткие тени и четко очерченные контуры, которые будут не в пользу фотографа. В солнечный день, лучше фотографировать в глубокой тени, куда не попадают лучи солнца, например, тень большого здания, беседки и прочее.

  • Облачная

Облачная погода является самой предпочтительной для съемок, поскольку облака дают мягкое освещение и изображение построено так, что цвета плавно вливаются один в другой по тону.

К сожалению, не всегда облачность может быть равномерной, а зачастую плотность ее колеблется, что влияет на интенсивность света.

  • Другие необычные погодные условия

Можно ли фотографировать в необычных условиях? При урагане, грозе и шторме черное небо внесет в вашу фотографию драматичности.

Съемка в тумане поможет зрителю лучше почувствовать глубину изображения и выстроить хорошую перспективу.

2. Время суток

Чтобы получить идеальный результат при портретной или пейзажной съемке, то выбирайте рассвет или закат. 30 минут до заката и после рассвета, считается золотым временем для фотосъемки. Преимуществом является то, что освещение быстро меняется. Это позволяет получить целый ряд уникальных разнообразных снимков.

Единственный недостаток – возможность упустить идеальный момент съемки. На закате тени удлиняются и становятся менее яркими, а утром все с точностью наоборот.

3. Географическое положение

4. Загрязнение воздуха

Загрязненные частицы рассеивают лучи света, делая его мягче и менее ярким.

Преимущества:

  1. Бесплатный источник;
  2. Цветопередача отлична, поскольку солнечный спектр непрерывен во всем диапазоне видимости.

Недостатки:

  1. Невозможно использование в темное время суток;
  2. Непостоянная температура цвета, что требует частых изменений настройки ;
  3. Трудность применения для построения сложных схем освещения;
  4. Малая яркость требует длительную выдержку, которую нельзя получить при съемке с рук.

Искусственное освещение

Все иначе обстоит с контролем искусственного света. Фотограф становится властным хозяином освещения и регулирует все параметры:

  • Количество;
  • Угол;
  • Расположение;
  • Интенсивность;
  • Жесткость;
  • Температуру цвета;
  • Баланс белого.

Зачем нужно выставление баланса белого? Чтобы цветопередача не имела искажений или имела лишь минимальные погрешности.

Цветовая температура

Остановимся подробнее на этом параметре. Что это такое? Ну, если опираться на теорию, то это характеристика, определяющая температуру черного предмета, который излучает свой цвет. Измеряется данная характеристика в Кельвинах (К).

Постоянное освещение

Что может являться примером источников постоянного освещения? Самый распространенный – галогенные лампы, а также натриевая лампа, лампы дневного холодного света и накаливания. Все они имеют разные параметры цветовой температуры.

К примеру, если взять вольфрамовые лампы, то они излучают красноватый оттенок, а галогенные – холодный голубой свет.

Преимущества использования:

  1. Умеренная цена;
  2. Полный контроль над светом;
  3. Можно выстраивать необходимые световые схемы по своему вкусу, получая различные светотеневые рисунки.

Недостатки:

  1. Большое потребление электроэнергии, соответственно, большие финансовые затраты;
  2. При съемке нужна длинная (не во всех случаях);
  3. Большая теплоотдача нагревает воздух и объекты съемки в помещении, что может сказаться на их деформации.

Импульсивное освещение

Что относится к источникам импульсивного цвета? Встроенные и внешние вспышки, моноблоки и генераторные системы.

Как происходит процесс съемки? В студиях, кроме импульсивной лампы установлен пилотный свет, то есть постоянный источник. Он выступает в виде вспомогательного параметра и помогает правильно построить светотеневой рисунок . Когда фотограф нажимает кнопку спуска затвора, вспышка срабатывает и в тот же момент пилотный свет гаснет и загорается после завершения работы вспышки.

Преимущества:

  1. Потребление энергии меньше, чем у постоянных искусственных источников;
  2. Теплоотдача низкая;
  3. Дают при съемке использовать эффект «замораживания объектов», например, брызги или падающие капли;
  4. Можно придумывать сложные световые схемы, что поможет поднять ваши работы на более высокий уровень.

Недостатки:

  1. Дороговизна приобретения;
  2. Если пилотный свет отсутствует, то придется искать «золотой» кадр среди пробников;
  3. Требуется соединение с фотокамерой, поэтому может замедлить съемку в случае фотографирования несколькими камерами.

Какой источник света выбрать?

Если вы производите портретную съемку или фотографируете предметы, то используйте искусственное освещение, чтобы регулировать все параметры.

Если вы фотографируете пейзажи или дикую природу, то там выбора нет. Только естественное освещение.

До начала съемок подберите подходящее настроение и чувства, которые вы хотите передать в вашей фотографии. После этого подберите нужную схему освещения.

Напоследок, изучите видео курс «» или «Моя первая ЗЕРКАЛКА ». Он поможет вам разобраться в основах фотографии и станет незаменимым помощникам в ваших начинаниях в качестве фотографа.

Моя первая ЗЕРКАЛКА — для сторонников зеркалки CANON.

Цифровая зеркалка для новичка 2.0 — для сторонников зеркалки NIKON.

На этом наш курс по типам источников света подошел к концу. Можно сочетать все источники вместе, если это нужно для воплощения творческой идеи. Нужно лишь учитывать различную температуру, которая влияет на цветопередачу. Например, фотографирование человека на закате, не обойтись без искусственного освещения, если вы хотите получить освещенное лицо модели и красивый закат.

Так же данная комбинация характерна при съемке черно-белой фотографии. Делитесь статьей со своими друзьями в социальных сетях и подписывайтесь на блог, чтобы стать профессионалом в деле фотографии.

Всех вам благ, Тимур Мустаев.

Никогда еще маленький городок Менло-Парк не знал такого ажиотажа. В канун нового, 1880 года туда, казалось, съехалось население всего штата Нью-Джерси, а может быть, и нескольких соседних штатов. Пенсильванская железная дорога не справлялась с потоком желающих, и пришлось пустить дополнительные поезда. Люди приезжали с единственной целью — посмотреть на то, как сто электрических солнц, ламп накаливания, освещают станцию, улицы и лабораторию Эдисона.

Так началась эра массового электрического освещения

Разумеется, и до изобретения электрического освещения люди осознавали необходимость искусственного света и пытались «разгонять тьму». «Если у тебя спрошено будет: что полезнее, солнце или месяц? — ответствуй: месяц. Ибо солнце светит днем, когда и без того светло; а месяц — ночью», — говорил Козьма Прутков. Яркость солнечного света настолько велика, что очень мало искусственных источников света могут с ним соперничать. А вот ночью приходится довольствоваться жалким отражением солнечного света от лунной поверхности (и то не всегда). Вот и приходится человечеству изобретать заменители.

Дар Прометея

Первым искусственным источником света был огонь, который, как известно, был подарен человечеству Прометеем. В качестве стационарного источника света служил костер, в качестве переносных — факелы, конструкция которых со временем менялась: от простой головешки, вынутой из костра, до рукоятки, обмотанной паклей и пропитанной нефтью, жиром или маслом. Несмотря на то, что факел — очень древнее изобретение (считается, что ему около миллиона лет!), он применяется и поныне: его далекие потомки, работающие на газе, зажигают олимпийский огонь, а фальшфейеры и ракеты применяют для ночной маркировки и сигнализации военные, охотники и туристы.

Помимо факела в каменном веке человечество изобрело лампу — кувшин, наполненный жиром или маслом, с погруженным в него фитилем (веревочным или тканевым). В третьем тысячелетии до нашей эры появились первые свечи — бруски из перетопленного твердого животного жира (сала) с фитилем внутри. В средние века в качестве материала для свечей применяли китовый жир и пчелиный воск, в настоящее время для этих целей используется парафин.

Факелы, свечи и лампы дают очень слабый свет. Спектр открытого огня сильно отличается от солнечного, под который природа «заточила» человеческий глаз. Существенная часть излучения приходится на тепловой (ИК) диапазон. Видимый свет излучают в основном частицы углерода, нагреваемые пламенем до высокой температуры (как раз эти несгоревшие частицы и образуют копоть). Спектр огня в видимом диапазоне захватывает лишь часть желтой и красной области. Работать при таком свете практически невозможно, и многие средневековые ремесленные гильдии дальновидно запрещали работу по ночам при искусственном свете, так как качество изделий при этом резко падало.

Поддайте газу!

В XIX веке широкое распространение получило газовое освещение. В 1807 году первые газовые фонари зажигаются на одной из центральных улиц Лондона — Пэлл-Мэлл. А уже к 1823 году улицы Лондона, общей протяженностью 215 миль, освещали сорок тысяч газовых фонарей (которые было принято называть рожками). Зажигались они каждый вечер вручную специальными людьми — фонарщиками. Кстати, эта должность была в некоторых странах выборной и весьма почетной.

Однако газовое освещение было не слишком эффективным. Главная проблема заключалась в том, что газовое пламя, горящее при недостаточном притоке кислорода, дает яркий свет, но при этом сильно коптит, а чистое некоптящее пламя (при избытке кислорода) практически невидимо. Но в 1885 году Уэлсбах предложил использовать калильную сетку, представляющую собой мешочек из ткани, пропитанный раствором неорганических веществ (различных солей). При прокаливании ткань сгорала, оставляя тонкий «скелет», ярко светящийся при нагревании под действием пламени.

В конце XIX века появились керосиновые лампы, их можно встретить и до сих пор. Многие из них оснащены калильными сетками (теперь уже металлическими или асбестовыми).

Первые шаги электричества

Первым электрическим источником света был, как это ни странно, «фонарик на батарейках». Правда, свет излучала не лампа накаливания, а электрическая дуга между угольными электродами, а батареи занимали целый стол. В 1809 году сэр Хэмфри Дэви продемонстрировал дуговой свет в Королевской академии наук в Лондоне. Генераторов в то время не было (Фарадей открыл явление электромагнитной индукции лишь в 1832 году), и батареи были единственным источником электропитания.

В 1878 году наш соотечественник Павел Яблочков усовершенствовал конструкцию, поставив электроды вертикально и разделив их слоем изолятора. Такая конструкция получила название «свеча Яблочкова» и использовалась во всем мире: например, Парижский оперный театр освещался с помощью таких «свечей».

Электрическая дуга давала яркий и достаточно сбалансированный по спектру свет, что позволяло использовать его очень широко. К 1884 году крупные американские города освещали более 90 тыс. дуговых ламп.

Горячие нити

Большинство людей связывают изобретение ламп накаливания с именем Эдисона. Однако несмотря на все его заслуги в этой области изобретателем лампы был все же не он.

Первая лампа накаливания больше напоминала ювелирное изделие или произведение искусства как по трудоемкости, так и по стоимости. Задолго до Эдисона, в 1820 году, Уоррен Де ла Рю поместил платиновую проволочку в стеклянный сосуд, из которого был откачан воздух, и пропустил по ней ток. Лампа получилась удачной, но… платиновой! Она была настолько дорогой, что о широком ее использовании не могло быть и речи.

Множество изобретателей экспериментировали с различными материалами, но лишь в 1879 году Джозеф Свен и Томас Эдисон независимо друг от друга разработали лампу накаливания с угольной нитью. Для своего изобретения Эдисон устроил массовую грандиозную презентацию: в канун нового, 1880 года он использовал 100 своих ламп, чтобы осветить улицы, лабораторию и станцию городка Менло-Парк (Нью-Джерси). Поезда ломились от желающих посмотреть на это чудо, и Пенсильванской железной дороге даже пришлось пустить дополнительные составы. Лампы Эдисона работали около ста часов, потребляли 100 Вт и давали световой поток в 16 кандел (для сравнения — современная 100-ваттная лампа накаливания дает свет силой порядка 100−140 кандел).

Дальнейшее совершенствование ламп происходило по двум направлениям: угольная нить была заменена в 1907 году на вольфрамовую, а с 1913 года лампы стали газонаполненными (сначала их заполняли азотом, потом перешли на аргон и криптон). Оба усовершенствования были сделаны в лабораториях компании General Electric, основанной Томасом Эдисоном.

Хорошо знакомая читателям нашего журнала современная лампа накаливания дешева, широко используется в быту, однако нельзя сказать, что свет ее идеален: он смещен в сторону красной и ИК-областей спектра. Эффективность также оставляет желать лучшего: ее КПД составляет всего 1−4%. В этом смысле лампа накаливания — скорее отопительный, а не осветительный прибор.

Лампы с начинкой

У обычных ламп накаливания, кроме низкого КПД, есть еще один серьезный недостаток. Вольфрам при работе постепенно испаряется с раскаленной поверхности нити и оседает на стенках колбы. Колба приобретает «тонированный» вид, что ухудшает светоотдачу. А за счет испарения вольфрама с поверхности нити жизнь лампы сокращается.

А вот если в газ, наполняющий колбу, добавить пары, например, йода, картина меняется. Атомы испаренного вольфрама соединяются с атомами йода, образуя йодид вольфрама, который не оседает на стенках колбы, а разлагается на раскаленной поверхности нити накаливания, возвращая вольфрам в нить, а пары йода — обратно в колбу. Но есть одно условие: температура стенок колбы тоже должна быть достаточно высокой — около 2500С. Именно поэтому колбы галогенных ламп такие компактные и, естественно, горячие!

Галогенные лампы, за счет высокой температуры нити, дают более белый свет и имеют более длительное время жизни по сравнению с обычными лампами накаливания.

Холодный свет

Эти лампы — прямые потомки электрической дуги. Только разряд в них происходит между двумя электродами в емкости, заполненной различными газами. В зависимости от давления (низкого — Лучи прожекторов

Еще один вид газоразрядных ламп — HID (High Intensity Discharge — газоразрядные лампы высокой интенсивности, или дуговые газосветные лампы). Здесь люминофор не применяется, а газ при протекании электрического тока и возникновении дугового разряда излучает свет в видимой области спектра. В качестве заполняющего газа обычно применяются пары ртути, натрия или галиды металлов.

Ртутные дуговые лампы высокого давления применяются в прожекторах при освещении стадионов и других крупных объектов, они дают очень яркий бело-голубой свет (УФ отсеивается фильтрами). Мощность ртутных ламп может составлять десятки киловатт. Металл-галидные лампы — разновидность ртутных, они имеют скорректированную цветопередачу

и увеличенную эффективность.

Натриевые дуговые лампы низкого давления хорошо знакомы всем нам: именно они стоят в уличных фонарях, дающих теплое «янтарное» свечение. Они хороши тем, что имеют отличную эффективность, большое время жизни (более 25 тыс. часов) и очень дешевы.

Кстати говоря, хорошо знакомый автомобилистам «ксенон» (которым оснащаются современные автомобили представительского класса) — газоразрядные лампы сверхвысокого давления.

Огни реклам

Традиционно рекламные вывески, сделанные из гнутых газонаполненных труб, называют неоновыми. Это тоже газоразрядные лампы, но на другом типе разряда — тлеющем. Интенсивность свечения в них не очень велика. В зависимости от газа, закачанного внутрь, они могут светиться разными цветами (собственно неоновые — красно-оранжевые).

Светодиоды

Говоря об автономных источниках света, нельзя не упомянуть о светодиодах (подробнее о светодиодах читайте в этом же номере. — Ред. «ПМ»). Это полупроводниковые приборы, генерирующие (при прохождении через них электрического тока) оптическое излучение. Излучение светодиода воспринимается человеческим глазом как одноцветное. Цвет излучения определяется используемым полупроводниковым материалом и легирующими примесями.

В силу высокого КПД и низких рабочих токов и напряжений, светодиоды — отличный материал для изготовления автономных источников света. В компактных фонарях они не имеют себе равных и со временем, скорее всего, полностью вытеснят из этого сектора лампы накаливания.

Лазер

Лазер был разработан независимо американским физиком Таунсом и нашими соотечественниками Басовым и Прохоровым в 1960 году.

Лазер дает мощный узкий пучок монохроматического (одной длины волны) излучения. Для общего освещения лазер не используют, но для специальных применений (например, световые шоу) ему нет равных. В зависимости от типа используемого рабочего тела и принципов, излучение лазера может иметь различные цвета. В быту чаще всего используются полупроводниковые лазеры — близкие родственники светодиодов.

Световая экзотика

Искусственный свет может быть не только электрическим. Широко распространены хемилюминесцентные (так называемые химические) маркеры — пластиковые прозрачные пробирки. Для «включения» свечения в них нужно смешать два разделенных тонкой мембраной вещества. Такой маркер полностью автономен, дает неяркий мягкий свет, но «горит» непродолжительное время и, разумеется, не восстанавливается.

И, наконец, один из самых экзотических источников — биолюминесцентный. Если набрать светлячков в стеклянную банку, излучаемого ими света вполне хватит, чтобы посмотреть время на наручных часах. Хотя этот источник — как раз не искусственный, а на 100% природного происхождения.

Поделиться