Производная in x. Производная сложной функции

Цели урока: убедиться в существовании выталкивающей силы, осознать причины её возникновения и вывести правила для её вычисления, содействовать формированию мировоззренческой идеи познаваемости явлений и свойств окружающего мира.

Задачи урока: Работать над формированием умений анализировать свойства и явления на основе знаний, выделять главную причину, влияющую на результат. Развивать коммуникативные умения. На этапе выдвижения гипотез развивать устную речь. Проверить уровень самостоятельности мышления школьника по применению учащимися знаний в различных ситуациях.

Архимед – выдающийся ученый Древней Греции, родился в 287 году до н.э. в портовом и судостроительном г. Сиракузы на острове Сицилия. Архимед получил блестящее образование у своего отца, астронома и математика Фидия, родственника сиракузского тирана Гиерона, покровительствовавшего Архимеду. В юности провёл несколько лет в крупнейшем культурном центре в Александрии, где у него сложились дружеские отношения с астрономом Кононом и географом-математиком Эратосфеном. Это послужило толчком к развитию его выдающихся способностей. В Сицилию вернулся уже зрелым ученым. Он прославился многочисленными научными трудами главным образом в области физики и геометрии.

Последние годы жизни Архимед был в Сиракузах, осажденных римским флотом и войском. Шла 2-я Пуническая война. И великий ученый, не жалея сил, организовывает инженерную оборону родного города. Он построил множество удивительных боевых машин, топивших вражеские корабли, разносивших их в щепы, уничтожавших солдат. Однако слишком маленьким было войско защитников города по сравнению с огромным римским войском. И в 212 г. до н.э. Сиракузы были взяты.

Гений Архимеда вызывал восхищение у римлян и римский полководец Марцелл приказал сохранить ему жизнь. Но солдат, не знавший в лицо Архимеда, убил его.

Одним из важнейших его открытий стал закон, впоследствии названный законом Архимеда. Существует предание, что идея этого закона посетила Архимеда, когда он принимал ванну, с возгласом “Эврика!” он выскочил из ванны и нагим побежал записывать пришедшую к нему научную истину. Суть этой истины и предстоит выяснить, нужно убедиться в существовании выталкивающей силы, осознать причины её возникновения и вывести правила для её вычисления.

Давление в жидкости или газе зависит от глубины погружения тела и приводит к появлению выталкивающей силы, действующей на тело и направленной вертикально вверх.

Если тело опустить в жидкость или газ, то под действием выталкивающей силы оно будет всплывать из более глубоких слоев в менее глубокие. Выведем формулу для определения силы Архимеда для прямоугольного параллелепипеда.

Давление жидкости на верхнюю грань равно

где: h1 – высота столба жидкости над верхней гранью.

Сила давления на верхнюю грань равна

F1= р1*S = ж*g*h1*S,

Где: S – площадь верхней грани.

Давление жидкости на нижнюю грань равно

где: h2 – высота столба жидкости над нижней гранью.

Сила давления на нижнюю грань равна

F2= p2*S = ж*g*h2*S,

Где: S – площадь нижней грани куба.

Поскольку h2 > h1, то р2 > р1 и F2 > F1.

Разность между силами F2 и F1 равна:

F2 – F1 = ж*g*h2*S – ж*g*h1*S = ж*g*S* (h2 – h1).

Так как h2 – h1 = V – объему тела или части тела, погруженной в жидкость или газ, то F2 – F1 = ж*g*S*H = g* ж*V

Произведение плотности на объем есть масса жидкости или газа. Следовательно, разность сил равна весу вытесненной телом жидкости:

F2 – F1= mж*g = Pж = Fвыт.

Выталкивающая сила есть сила Архимеда, определяющая закон Архимеда

Равнодействующая сил, действующих на боковые грани равна нулю, поэтому в расчетах не участвует.

Таким образом, на тело, погруженное в жидкость или газ, действует выталкивающая сила равная весу вытесненной им жидкости или газа.

Закон Архимеда, впервые был упомянут Архимедом в трактате "О плавающих телах". Архимед писал: "тела более тяжелые, чем жидкость, опущенные в эту жидкость, будут опускаться пока не дойдут до самого низа, и в жидкости станут легче на величину веса жидкости в объеме, равном объему погруженного тела".

Рассмотрим, как зависит сила Архимеда и зависит ли от веса тела, объема тела, плотности тела и плотности жидкости.

Исходя из формулы силы Архимеда, она зависит от плотности жидкости, в которую погружено тело, и от объёма этого тела. Но она не зависит, например, от плотности вещества тела, погружаемого в жидкость, так как эта величина не входит в полученную формулу.
Определим теперь вес тела, погружённого в жидкость (или газ). Так как две силы, действующие на тело в этом случае, направлены в противоположные стороны (сила тяжести вниз, а архимедова сила вверх), то вес тела в жидкости будет меньше веса тела в вакууме на архимедову силу:

P А = m т g – m ж g = g (m т – m ж)

Таким образам, если тело погружено в жидкость (или газ), то оно теряет в своём весе столько, сколько весит вытесненная им жидкость (или газ).

Следовательно:

Сила Архимеда зависит от плотности жидкости и объема тела или его погруженной части и не зависит от плотности тела, его веса и объема жидкости.

Определение силы Архимеда лабораторным методом.

Оборудование: стакан с чистой водой, стакан с соленой водой, цилиндр, динамометр.

Ход работы:

  • определяем вес тела в воздухе;
  • определяем вес тела в жидкости;
  • находим разницу между весом тела в воздухе и весом тела в жидкости.

4. Результаты измерений:

Сделать вывод как зависит сила Архимеда от плотности жидкости.

Выталкивающая сила действует на тела любых геометрических форм. В технике наиболее распространены тела цилиндрической и сферической форм, тела с развитой поверхностью, полые тела в форме шара, прямоугольного параллелепипеда, цилиндра.

Гравитационная сила приложена к центру масс погруженного в жидкость тела и направлена перпендикулярно к поверхности жидкости.

Подъемная сила действует на тело со стороны жидкости, направлена по вертикали вверх, приложена к центру тяжести вытесненного объема жидкости. Тело движется в направлении, перпендикулярном к поверхности жидкости.

Выясним условия плавания тел, которые основываются на законе Архимеда.

Поведение тела, находящегося в жидкости или газе, зависит от соотношения между модулями силы тяжести F т и силы Архимеда F A , которые действуют на это тело. Возможны следующие три случая:

  • F т > F A - тело тонет;
  • F т = F A - тело плавает в жидкости или газе;
  • F т < F A - тело всплывает до тех пор, пока не начнет плавать.

Другая формулировка (где P t - плотность тела, P s - плотность среды, в которую оно погружено):

  • P t > P s - тело тонет;
  • P t = P s - тело плавает в жидкости или газе;
  • P t < P s - тело всплывает до тех пор, пока не начнет плавать.

Плотность организмов живущих в воде почти не отличается от плотности воды, поэтому прочные скелеты им не нужны! Рыбы регулируют глубину погружения, меняя среднюю плотность своего тела. Для этого им необходимо лишь изменить объем плавательного пузыря, сокращая или расслабляя мышцы.

Если тело лежит на дне в жидкости или газе, то сила Архимеда равна нулю.

Закон Архимеда используется в судостроении и воздухоплавании.

Схема плавающего тела:

Линия действия силы тяжести тела G проходит через центр тяжести K (центр водоизмещения) вытесненного объема жидкости. В нормальном положении плавающего тела центр тяжести тела Т и центр водоизмещения K размещены по одной вертикали, называемой осью плаванья.

При качке центр водоизмещения К перемещается в точку К1, и сила тяжести тела и Архимедова сила FА образуют пару сил, которая стремится либо вернуть тело в исходное положение, либо увеличить крен.

В первом случае плавающее тело обладает статической устойчивостью, во втором случае устойчивость отсутствует. Устойчивость тела зависит от взаимного расположения центра тяжести тела Т и метацентра М (точки пересечения линии действия архимедовой силы при крене с осью плавания).

В 1783 году братья МОНГОЛЬФЬЕ изготовили огромный бумажный шар, под которым поместили чашку с горящим спиртом. Шар наполнился горячим воздухом и начал подниматься, достигнув высоты 2000 метров.

Причина возникновения архимедовой силы – разность давлений среды на разной глубине. Поэтому сила Архимеда возникает только в при наличии силы тяжести. На Луне она будет вшестеро, а на Марсе – в 2,5 раза меньше, чем на Земле.

В невесомости архимедовой силы нет. Если представить себе, что сила тяжести на Земле вдруг пропала, то все корабли в морях, океанах и реках от малейшего толчка уйдут на любую глубину. А вот подняться вверх им не даст не зависящее от силы тяжести поверхностное натяжение воды, так что взлететь они не смогут, все потонут.

Как проявляется сила Архимеда

Величина архимедовой силы зависит от объема погруженного тела и плотности среды, в которой оно находится. Его точная в современном представлении: на погруженное в жидкую или газовую среду тело в поле силы тяжести действует выталкивающая сила, в точности равная весу вытесненной телом среды, то есть F = ρgV, где F – сила Архимеда; ρ – плотность среды; g – ускорение свободного падения; V – объем вытесненной телом или погруженной его частью жидкости (газа).

Если в пресной воде на каждый литр объема погруженного тела действует выталкивающая сила в 1 кг (9,81 н), то в морской воде, плотность которой 1,025 кг*куб. дм, на тот же литр объема будет действовать сила Архимеда в 1 кг 25 г. Для человека средней комплекции разность силы поддержки морской и пресной водой составит почти 1,9 кг. Поэтому плавать в море легче: представьте себе, что вам нужно переплыть хотя бы пруд без течения с двухкилограммовой гантелью за поясом.

От формы погруженного тела архимедова сила не зависит. Возьмите железный цилиндр, измерьте силу его из воды. Затем раскатайте этот цилиндр в лист, погрузите в воду плашмя и ребром. Во всех трех случаях сила Архимеда окажется одинаковой.

На первый взгляд странно, но, если погружать лист плашмя, то уменьшение разности давлений для тонкого листа компенсируется увеличением его площади, перпендикулярной поверхности воды. А при погружении ребром - наоборот, малая площадь ребра компенсируется большей высотой листа.

Если вода очень сильно насыщена солями, отчего ее плотность стала выше плотности человеческого тела, то в ней не утонет и человек, не умеющий плавать. В Мертвом море в Израиле, например, туристы могут часами лежать на воде, не шевелясь. Правда, ходить по нему все равно нельзя – площадь опоры получается малой, человек проваливается в воду по горло, пока вес погруженной части тела не сравняется с весом вытесненной им воды. Однако при наличии некоторой доли фантазии сложить легенду о хождении по воде можно. А вот в керосине, плотность которого всего 0,815 кг*куб. дм, не сможет удержаться на поверхности и очень опытный пловец.

Архимедова сила в динамике

То, что суда плавают благодаря силе Архимеда, известно всем. Но рыбаки знают, что архимедову силу можно использовать и в динамике. Если на попалась большая и сильная рыбина (таймень, например), то медленно подтягивать ее к сачку (вываживать) нет: оборвет леску и уйдет. Нужно сначала дернуть слегка, когда она уходит. Почувствовав при этом крючок, рыба, стремясь освободиться от него, метнется в сторону рыбака. Тогда нужно дернуть очень сильно и резко, чтобы леска не успела порваться.

В воде тело рыбы почти ничего не весит, но его масса с инерцией сохраняются. При таком способе ловли архимедова сила как бы наддаст рыбе в хвост, и добыча сама плюхнется к ногам рыболова или к нему в лодку.

Архимедова сила в воздухе

Архимедова сила действует не только в жидкостях, но и в газах. Благодаря ей летают воздушные шары и дирижабли (цеппелины). 1 куб. м воздуха при нормальных условиях (20 градусов Цельсия на уровне моря) весит 1,29 кг, а 1 кг гелия – 0,21 кг. То есть 1 кубометр наполненной оболочки способен поднять груз в 1,08 кг. Если оболочка диаметром в 10 м, то ее объем будет 523 куб. м. Выполнив ее из легкого синтетического материала, получим подъемную силу около полутонны. Архимедову силу в воздухе аэронавты называют сплавной силой.

Если из аэростата откачать воздух, не дав ему сморщиться, то каждый его кубометр потянет вверх уже все 1,29 кг. Прибавка более 20% к подъемной силе технически весьма соблазнительна, да гелий дорог, а водород взрывоопасен. Поэтому проекты вакуумных дирижаблей время от времени появляются на свет. Но материалов, способных при этом выдержать большое (около 1 кг на кв. см) атмосферное давление снаружи на оболочку, современная технология создать пока не способна.

Представлено доказательство и вывод формулы для производной косинуса - cos(x). Примеры вычисления производных от cos 2x, cos 3x, cos nx, косинуса в квадрате, в кубе и в степени n. Формула производной косинуса n-го порядка.

Содержание

См. также: Синус и косинус - свойства, графики, формулы

Производная по переменной x от косинуса x равна минус синусу x:
(cos x)′ = - sin x .

Доказательство

Чтобы вывести формулу производной косинуса, воспользуемся определением производной:
.

Преобразуем это выражение, чтобы свести его к известным математическим законам и правилам. Для этого нам нужно знать четыре свойства.
1) Тригонометрические формулы . Нам понадобится следующая формула:
(1) ;
2) Свойство непрерывности функции синус:
(2) ;
3) Значение первого замечательного предела:
(3) ;
4) Свойство предела от произведения двух функций:
Если и , то
(4) .

Применяем эти законы к нашему пределу. Сначала преобразуем алгебраическое выражение
.
Для этого применим формулу
(1) ;
В нашем случае
; . Тогда
;
;
;
.

Сделаем подстановку . При , . Используем свойство непрерывности (2):
.

Сделаем такую же подстановку и применим первый замечательный предел (3):
.

Поскольку пределы, вычисленные выше, существуют, то применяем свойство (4):

.

Тем самым мы получили формулу производной косинуса.

Примеры

Рассмотрим простые примеры нахождения производных от функций, содержащих косинус. Найдем производные от следующих функций:
y = cos 2x; y = cos 3x; y = cos nx; y = cos 2 x ; y = cos 3 x и y = cos n x .

Пример 1

Найти производные от cos 2x, cos 3x и cos nx .

Исходные функции имеют похожий вид. Поэтому мы найдем производную от функции y = cos nx . Затем, в производную от cos nx , подставим n = 2 и n = 3 . И, тем самым, получим формулы для производных от cos 2x и cos 3x .

Итак, находим производную от функции
y = cos nx .
Представим эту функцию от переменной x как сложную функцию, состоящую из двух функций:
1)
2)
Тогда исходная функция является сложной (составной) функцией, составленной из функций и :
.

Найдем производную от функции по переменной x:
.
Найдем производную от функции по переменной :
.
Применяем .
.
Подставим :
(П1) .

Теперь, в формулу (П1) подставим и :
;
.

;
;
.

Пример 2

Найти производные от косинуса в квадрате, косинуса в кубе и косинуса в степени n:
y = cos 2 x ; y = cos 3 x ; y = cos n x .

В этом примере также функции имеют похожий вид. Поэтому мы найдем производную от самой общей функции - косинуса в степени n:
y = cos n x .
Затем подставим n = 2 и n = 3 . И, тем самым, получим формулы для производных от косинуса в квадрате и косинуса в кубе.

Итак, нам нужно найти производную от функции
.
Перепишем ее в более понятном виде:
.
Представим эту функцию как сложную функцию, состоящую из двух функций:
1) Функции , зависящей от переменной : ;
2) Функции , зависящей от переменной : .
Тогда исходная функция является сложной функцией, составленной из двух функций и :
.

Находим производную от функции по переменной x:
.
Находим производную от функции по переменной :
.
Применяем правило дифференцирования сложной функции .
.
Подставим :
(П2) .

Теперь подставим и :
;
.

;
;
.

Производные высших порядков

Заметим, что производную от cos x первого порядка можно выразить через косинус следующим образом:
.

Найдем производную второго порядка, используя формулу производной сложной функции :

.
Здесь .

Заметим, что дифференцирование cos x приводит к увеличению его аргумента на . Тогда производная n-го порядка имеет вид:
(5) .

Более строго эту формулу можно доказать с помощью метода математической индукции. Доказательство для n-й производной синуса изложено на странице “Производная синуса ”. Для n-й производной косинуса доказательство точно такое. Нужно только во всех формулах заменить sin на cos.

См. также:

Доказательство и вывод формул производной экспоненты (e в степени x) и показательной функции (a в степени x). Примеры вычисления производных от e^2x, e^3x и e^nx. Формулы производных высших порядков.

Содержание

См. также: Показательная функция - свойства, формулы, график
Экспонента, e в степени x - свойства, формулы, график

Основные формулы

Производная экспоненты равна самой экспоненте (производная e в степени x равна e в степени x):
(1) (e x )′ = e x .

Производная показательной функции с основанием степени a равна самой функции, умноженной на натуральный логарифм от a :
(2) .

Экспонента - это показательная функция, у которой основание степени равно числу e , которое является следующим пределом:
.
Здесь может быть как натуральным, так и действительным числом. Далее мы выводим формулу (1) производной экспоненты.

Вывод формулы производной экспоненты

Рассмотрим экспоненту, e в степени x :
y = e x .
Эта функция определена для всех . Найдем ее производную по переменной x . По определению, производная является следующим пределом:
(3) .

Преобразуем это выражение, чтобы свести его к известным математическим свойствам и правилам. Для этого нам понадобятся следующие факты:
А) Свойство экспоненты :
(4) ;
Б) Свойство логарифма :
(5) ;
В) Непрерывность логарифма и свойство пределов для непрерывной функции:
(6) .
Здесь - некоторая функция, у которой существует предел и этот предел положителен.
Г) Значение второго замечательного предела :
(7) .

Применяем эти факты к нашему пределу (3). Используем свойство (4):
;
.

Сделаем подстановку . Тогда ; .
В силу непрерывности экспоненты,
.
Поэтому при , . В результате получаем:
.

Сделаем подстановку . Тогда . При , . И мы имеем:
.

Применим свойство логарифма (5):
. Тогда
.

Применим свойство (6). Поскольку существует положительный предел и логарифм непрерывен, то:
.
Здесь мы также воспользовались вторым замечательным пределом (7). Тогда
.

Тем самым мы получили формулу (1) производной экспоненты.

Вывод формулы производной показательной функции

Теперь выведем формулу (2) производной показательной функции с основанием степени a . Мы считаем, что и . Тогда показательная функция
(8)
Определена для всех .

Преобразуем формулу (8). Для этого воспользуемся свойствами показательной функции и логарифма .
;
.
Итак, мы преобразовали формулу (8) к следующему виду:
.

Производные высших порядков от e в степени x

Теперь найдем производные высших порядков. Сначала рассмотрим экспоненту:
(14) .
(1) .

Мы видим, что производная от функции (14) равна самой функции (14). Дифференцируя (1), получаем производные второго и третьего порядка:
;
.

Отсюда видно, что производная n-го порядка также равна исходной функции:
.

Производные высших порядков показательной функции

Теперь рассмотрим показательную функцию с основанием степени a :
.
Мы нашли ее производную первого порядка:
(15) .

Дифференцируя (15), получаем производные второго и третьего порядка:
;
.

Мы видим, что каждое дифференцирование приводит к умножению исходной функции на . Поэтому производная n-го порядка имеет следующий вид:
.

См. также:

Основа доказательства ― определение предела функции. Можно воспользоваться другим способом, используя тригонометрические формулы приведения для косинуса и синуса углов. Выразить одну функцию через другую - косинус через синус, и продифференцировать синус со сложным аргументом.

Рассмотрим первый пример вывода формулы (Cos(х))"

Даем ничтожно малое приращение Δх аргументу х функции у = Cos(х). При новом значении аргумента х+Δх получаем новое значение функции Cos(х+Δх). Тогда приращение функции Δу будет равно Cos(х+Δx)-Cos(x).
Отношение же приращения функции к Δх будет таким: (Cos(х+Δx)-Cos(x))/Δх. Проведем тождественные преобразования в числителе получившейся дроби. Вспомним формулу разности косинусов углов, результатом будет произведение -2Sin(Δх/2) умножить на Sin(х+Δх/2). Находим предел частного lim этого произведения на Δх при Δх, стремящемся к нулю. Известно, что первый (его называют замечательным) предел lim(Sin(Δх/2)/(Δх/2)) равен 1, а предел -Sin(х+Δх/2) равен -Sin(x) при Δx, стремящемся к нулю.
Запишем результат: производная (Cos(х))" равна - Sin(х).

Некоторым больше нравится второй способ вывода той же формулы

Из курса тригонометрии известно: Cos(х) равно Sin(0,5·∏-х), аналогично Sin(х) равно Cos(0,5·∏-x). Тогда дифференцируем сложную функцию - синус дополнительного угла (вместо косинуса икс).
Получим произведение Cos(0,5·∏-х)·(0,5·∏-х)", потому что производная синуса х равна косинусу х. Обращаемся ко второй формуле Sin(х) = Cos(0,5·∏-x) замены косинуса на синус, учитываем, что (0,5·∏-х)" = -1. Теперь получаем -Sin(x).
Итак, найдена производная косинуса, у" = -Sin(х) для функции у = Cos(х).

Часто используемый пример, где употребляется производная косинуса. Функция y = Cos 2 (x) сложная. Находим сначала дифференциал степенной функции с показателем 2, это будет 2·Cos(x), затем умножаем его на производную (Cos(x))", которая равна -Sin(х). Получаем y" = -2·Cos(х)·Sin(x). Когда применим формулу Sin(2·х), синуса двойного угла, получим окончательный упрощенный
ответ y" = -Sin(2·х)

Гиперболические функции

Применяются при изучении многих технических дисциплин: в математике, например, облегчают вычисления интегралов, решение Выражаются они через тригонометрические функции с мнимым аргументом, так, гиперболический косинус ch(х) = Cos(i·х), где i ― мнимая единица, гиперболический синус sh(x) = Sin(i·x).

Производная гиперболического косинуса вычисляется достаточно просто.
Рассмотрим функцию у = (e x +e -x)/2, это и есть гиперболический косинус ch(х). Используем правило нахождения производной суммы двух выражений, правило выноса постоянного множителя (Const) за знак производной. Второе слагаемое 0,5·е -х ― сложная функция (ее производная равна -0,5·е -х), 0,5·е х ― первое слагаемое. (ch(х)) "=((e х +e - x)/2)" можно записать по другому: (0,5·e х +0,5·е - х)" = 0,5·e х -0,5·e - х, потому что производная (e - x)" равна -1, умнноженная на e - x . Получилась разность, а это есть гиперболический синус sh(x).
Вывод: (ch(х))" = sh(x).
Рассмитрим на примере, как вычислить производную функции у = ch(x 3 +1).
По гиперболического косинуса со сложным аргументом у" = sh(x 3 +1)·(x 3 +1)", где (x 3 +1)" = 3·x 2 +0.
Ответ: производная данной функции равна 3·х 2 ·sh(х 3 +1).

Производные рассмотренных функций у = ch(х) и y = Cos(х) табличные

При решении примеров нет необходимости каждый раз дифференцировать их по предложенной схеме, достаточно использовать вывод.
Пример. Продифференцировать функцию у = Cos(x)+Cos 2 (-x)-Ch(5·х).
Легко вычислить (воспользуемся табличными данными), у" = -Sin(x)+Sin(2·х)-5·Sh(5·х).

Поделиться