Чувствительность анализаторов, определяемая величиной абсолютных порогов, не постоянна и изменяется под влиянием ряда физиологических и психологических условий, среди которых особое место занимает явление адаптации. Изменчивость чувствительности анализато

Нижний порог ощущений - минимальная величина раздражителя, вызывающая едва заметное ощущение. Верхний порог ощущений - максимальная величина раздражителя, которую анализатор способен воспринимать адекватно. Диапазон чувствительности - интервал между нижним и верхним порогом ощущений.

Дифференциальный порог - наименьшая величина различий между раздражителями, когда разница между ними еще улавливается (закон Вебера).

Оперативный порог - величина различия между сигналами, при которой точность и скорость различения достигают максимума. Величина оперативного порога в 10-15 раз больше величины дифференциального порога.

Временной порог - минимальная продолжительность воздействия раздражителя, необходимая для возникновения ощущения.

Латентный период реакции - промежуток времени от момента подачи сигнала до момента возникновения ощущения.

Инерция - время исчезновения ощущения после окончания воздействия.

Для осуществления эффективного воздействия на человека необходимо учитывать характеристики его анализаторов, которые определяются опытным путем (например, смена темпа речи) или уже определены и закреплены в специальной литературе. Известно, например, что инерция зрения у нормального человека составляет 0,1-0,2 сек, поэтому время действия сигнала и интервал между появляющимися сигналами должны быть не меньше времени сохранения ощущений, равного 0,2-0,5 сек. В противном случае будут замедляться скорость и точность реагирования, поскольку во время прихода нового сигнала у человека будет еще оставаться образ предыдущего.

В процессе общения - ощущения человека человеком - также присутствует инерция, диктуя свой "закон": до тех пор, пока вы видите, что восприятие вашего "старого" образа еще свежо в памяти, не стремитесь быстро и навязчиво проявить себя в новом качестве: это объясняется тем, что адекватной реакции не последует, причем чем более впечатлительна личность, на которую производится воздействие, тем инертнее она будет реагировать на изменения.

Ощущения и их адекватность, или, иными словами, психологические возможности человека по приему информации, наиболее важны в деятельности тех людей, работа которых требует высокой степени точности: инженеров, врачей и т.д.

Чувствительность анализаторов непостоянна и изменяется под воздействием физиологических и психологических условий. Органы чувств обладают свойством приспособления, или адаптации. Адаптация может проявляться и как полное исчезновение ощущения в процессе продолжительного воздействия раздражителя, и как понижение или повышение чувствительности под влиянием воздействия раздражителя.

Интенсивность ощущений зависит не только от силы раздражителя и уровня адаптации рецепторов, но и от раздражений, воздействующих в данный момент на другие органы чувств. Изменение чувствительности анализаторов под влиянием раздражения других органов чувств называется взаимодействием ощущений. Взаимодействие ощущений проявляется в повышении и понижении чувствительности: слабые раздражители повышают чувствительность анализаторов, а сильные понижают.

Взаимодействие ощущений проявляется в явлениях сенсибилизации и синестезии. Сенсибилизация (лат. sensibilis - чувствительный) - повышение чувствительности нервных центров под влиянием воздействия раздражителя. Сенсибилизация может развиться не только путем применения побочных раздражителей, но и путем упражнений. Так, у музыкантов развивается высокая слуховая чувствительность, у дегустаторов - обонятельные и вкусовые ощущения. Синестезия - это возникновение под влиянием раздражения некоторого анализатора ощущения, характерного для другого анализатора. Так, при воздействии звуковых раздражителей у человека могут возникать зрительные образы.

Боб Нельсон (Bob Nelson)

Чаще всего анализаторы спектра применяются для измерения сигналов очень малого уровня. Это могут быть известные сигналы, параметры которых необходимо измерить, или неизвестные сигналы, которые нужно обнаружить. В любом случае, для улучшения этого процесса следует иметь представление о методах повышения чувствительности анализатора спектра. В этой статье мы обсудим оптимальные настройки для измерения сигналов малого уровня. Кроме того, мы обсудим применение коррекции шума и функции снижения собственных шумов анализатора для максимального повышения чувствительности прибора.

Средний уровень собственных шумов и коэффициент шума

Чувствительность анализатора спектра можно узнать из его технических характеристик. В роли этого параметра может выступать либо средний уровень собственных шумов (DANL ), либо коэффициент шума (NF ). Средний уровень собственных шумов представляет собой амплитуду собственных шумов анализатора спектра в заданном диапазоне частот с 50‑омной нагрузкой на входе и входным ослаблением 0 дБ. Обычно этот параметр выражается в дБм/Гц. В большинстве случаев усреднение выполняется по логарифмической шкале. Это приводит к снижению отображаемого среднего уровня шума на 2,51 дБ. Как мы узнаем из дальнейшего обсуждения, именно это снижение уровня шумов отличает средний уровень собственных шумов от коэффициента шума. Например, если в технических характеристиках анализатора указано значение среднего уровня собственных шумов – 151 дБм/Гц при полосе пропускания фильтра ПЧ (RBW ) 1 Гц, то с помощью настроек анализатора вы можете снизить уровень собственных шумов устройства как минимум до этого значения. Кстати, немодулированный сигнал (CW), имеющий ту же амплитуду, что и шум анализатора спектра, окажется при измерении на 2,1 дБ выше уровня шумов из-за суммирования двух сигналов. Аналогичным образом наблюдаемая амплитуда шумоподобных сигналов будет на 3 дБ превышать уровень собственных шумов.

Собственный шум анализатора состоит из двух компонентов. Первый из них определяется коэффициентом шума (NF ас ), а второй представляет собой тепловой шум. Амплитуда теплового шума описывается уравнением:

NF = kTB,

где k = 1,38×10–23 Дж/K - постоянная Больцмана; T - температура (К); B - полоса (Гц), в которой измеряется шум.

Эта формула определяет энергию теплового шума на входе анализатора спектра с установленной нагрузкой 50 Ом. В большинстве случаев полоса приводится к 1 Гц, и при комнатной температуре расчетное значение теплового шума 10log(kTB) = –174 дБм/Гц.

В результате значение среднего уровня собственных шумов в полосе 1 Гц описывается уравнением:

DANL = –174+NF ас = 2,51 дБ. (1)

Кроме того,

NF ас = DANL +174+2,51. (2)

Примечание. Если для параметра DANL используется среднеквадратическое усреднение мощности, то член 2,51 можно опустить.

Таким образом, значение среднего уровня собственных шумов –151 дБм/Гц эквивалентно значению NF ас = 25,5 дБ.

Настройки, влияющие на чувствительность анализатора спектра

Усиление анализатора спектра равно единице. Это означает, что экран калибруется по входному порту анализатора. Таким образом, если подать на вход сигнал с уровнем 0 дБм, измеренный сигнал будет равняться 0 дБм плюс/минус погрешность прибора. Это нужно учитывать при использовании в анализаторе спектра входного аттенюатора или усилителя. Включение входного аттенюатора заставляет анализатор повышать эквивалентное усиление каскада ПЧ для сохранения калиброванного уровня на экране. Это, в свою очередь, повышает уровень собственных шумов на ту же величину, сохраняя, тем самым, прежнее отношение сигнал/шум. Это справедливо и для внешнего аттенюатора. Кроме того, нужно сделать пересчет на полосу пропускания фильтра ПЧ (RBW ), большую 1 Гц, добавив член 10log(RBW /1). Эти два члена позволяют определить уровень собственных шумов анализатора спектра при разных значениях ослабления и полосы разрешения.

Уровень шумов = DANL + ослабление + 10log(RBW ). (3)

Добавление предусилителя

Для снижения собственных шумов анализатора спектра можно использовать встроенный или внешний предусилитель. Обычно в технических характеристиках указывается второе значение среднего уровня собственных шумов с учетом встроенного предусилителя, и при этом можно использовать все приведенные выше уравнения. При использовании внешнего предусилителя новое значение среднего уровня собственных шумов можно рассчитать, каскадируя уравнения для коэффициента шума и считая усиление анализатора спектра равным единице. Если рассмотреть систему, состоящую из анализатора спектра и усилителя, то получится уравнение:

NF сист = NF предус +(NF ас –1)/G предус . (4)

Используя значение NF ас = 25,5 дБ из предыдущего примера, усиление предусилителя 20 дБ и коэффициент шума 5 дБ, мы можем определить общий коэффициент шума системы. Но сначала нужно преобразовать значения в отношение мощностей и взять логарифм от результата:

NF сист = 10log(3,16+355/100) = 8,27 дБ. (5)

Теперь можно использовать уравнение (1) для определения нового значения среднего уровня собственных шумов с внешним предусилителем, просто заменив NF ас на NF сист , рассчитанное в уравнении (5). В нашем примере предусилитель существенно уменьшает DANL с –151 до –168 дБм/Гц. Однако это не дается даром. Предусилители, как правило, обладают большой нелинейностью и низким значением точки компрессии, что ограничивает возможность измерения сигналов большого уровня. В таких случаях более полезным оказывается встроенный предусилитель, поскольку его можно включать и отключать по мере необходимости. Это особенно справедливо для автоматизированных контрольно-измерительных систем.

До сих пор мы обсуждали, как влияют полоса пропускания фильтра ПЧ, аттенюатор и предусилитель на чувствительность анализатора спектра. В большинстве современных анализаторов спектра предусмотрены методы измерения собственных шумов и коррекции результатов измерений на основе полученных данных. Эти методы применяются уже многие годы.

Коррекция шума

При измерении характеристик некоторого тестируемого устройства (ТУ) анализатором спектра наблюдаемый спектр складывается из суммы kTB , NF ас и входного сигнала ТУ. Если отключить ТУ и подключить к входу анализатора нагрузку 50 Ом, спектр будет представлять собой сумму kTB и NF ас . Эта трасса является собственным шумом анализатора. В общем случае коррекция шумов заключается в измерении собственного шума анализатора спектра с большим усреднением и сохранении этого значения в виде «поправочной трассы». Затем вы подключаете к анализатору спектра тестируемое устройство, измеряете спектр и заносите результаты в «измеренную трассу». Поправка осуществляется путем вычитания «поправоч- ной трассы» из «измеренной трассы» и отображения результатов в виде «результирующей трассы». Эта трасса представляет собой «сигнал ТУ» без дополнительного шума:

Результирующая трасса = измеренная трасса – поправочная трасса = [сигнал ТУ + kTB + NF ас ]–[kTB + NF ас ] = сигнал ТУ. (6)

Примечание. Перед вычитанием все значения преобразовывались из дБм в мВт. Результирующая трасса представлена в дБм.

Эта процедура улучшает отображение сигналов малого уровня и позволяет точнее измерять амплитуду благодаря устранению погрешности, связанной с собственными шумами анализатора спектра.


На рис. 1 показан сравнительно простой метод коррекции шума путем применения математической обработки трассы. Сначала выполняется усреднение собственных шумов анализатора спектра с нагрузкой на входе, результат сохраняется в трассе 1. Затем подключается ТУ, захватывается входной сигнал, а результат сохраняется в трассе 2. Теперь можно использовать математическую обработку - вычитание двух трасс и занесение результатов в трассу 3. Как видите, коррекция шума особенно эффективна, когда входной сигнал близок к уровню собственных шумов анализатора спектра. Сигналы большого уровня содержат значительно меньшую долю шума, и поправка не дает заметного эффекта.

Основной недостаток такого подхода заключается в том, что при каждом изменении настроек приходится отключать тестируемое устройство и подключать нагрузку 50 Ом. Метод получения «поправочной трассы» без отключения ТУ заключается в увеличении ослабления входного сигнала (например, на 70 дБ) для того, чтобы шум анализатора спектра значительно превысил входной сигнал, и сохранении полученных результатов в «поправочной трассе». В этом случае «поправочная трасса» определяется уравнением:

Поправочная трасса = сигнал ТУ + kTB + NF ас + аттенюатор. (7)

kTB + NF ас + аттенюатор >> сигнал ТУ,

мы можем опустить член «сигнал ТУ» и заявить, что:

Поправочная трасса = kTB + NF ас + аттенюатор. (8)

Вычитая известное значение ослабления аттенюатора из формулы (8), мы можем получить исходную «поправочную трассу», которую использовали в ручном методе:

Поправочная трасса = kTB + NF ас . (9)

В этом случае проблема заключается в том, что «поправочная трасса» действительна только для текущих настроек прибора. Изменение настроек, таких как центральная частота, полоса обзора или полоса пропускания фильтра ПЧ, делает значения, сохраненные в «поправочной трассе», некорректными. Лучший подход заключается в знании значений NF ас во всех точках частотного спектра и применении «поправочной трассы» при любых настройках.

Снижение собственных шумов

Анализатор сигналов Agilent N9030A PXA (рис. 2) имеет уникальную функцию снижения собственных шумов (NFE). Коэффициент шума анализатора сигналов PXA во всем частотном диапазоне прибора измеряется в процессе его изготовления и калибровки . Затем эти данные сохраняются в памяти прибора. Когда пользователь включает NFE, измерительный прибор рассчитывает «поправочную трассу» для текущих настроек и сохраняет значения коэффициента шума. Это позволяет обойтись без измерения собственных шумов PXA, как это делалось в ручной процедуре, что существенно упрощает коррекцию шумов и экономит время, уходящее на измерение шумов прибора при изменении настроек.


В любом из описанных методов из «измеренной трассы» вычитается тепловой шум kTB и NF ас , что позволяет получать результаты, лежащие ниже значения kTB . Эти результаты могут быть достоверными во многих случаях, но не во всех. Достоверность может уменьшаться, когда измеренные значения очень близки или равны собственному шуму прибора. Фактически результатом при этом будет бесконечное значение в дБ. Практическая реализация коррекции шума обычно включает введение порога или градуированного уровня вычитания вблизи уровня собственных шумов прибора.

Заключение

Мы рассмотрели некоторые методы измерения сигналов низкого уровня с помощью анализатора спектра. При этом мы установили, что на чувствительность измерительного прибора оказывает влияние полоса пропускания фильтра ПЧ, ослабление аттенюатора и наличие предусилителя. Для дополнительного повышения чувствительности прибора можно применять такие методы, как математическая коррекция шума и функция снижения собственных шумов. На практике значительного повышения чувствительности можно добиться, устранив потери во внешних цепях.

Нижний порог ощущений - минимальная величина раздражителя, вызывающая едва заметное ощущение. Верхний порог ощущений - максимальная величина раздражителя, которую анализатор способен воспринимать адекватно. Диапазон чувствительности - интервал между нижним и верхним порогом ощущений.

Дифференциальный порог - наименьшая величина различий между раздражителями, когда разница между ними еще улавливается (закон Вебера).

Оперативный порог - величина различия между сигналами, при которой точность и скорость различения достигают максимума. Величина оперативного порога в 10-15 раз больше величины дифференциального порога.

Временной порог - минимальная продолжительность воздействия раздражителя, необходимая для возникновения ощущения.

Латентный период реакции - промежуток времени от момента подачи сигнала до момента возникновения ощущения.

Инерция - время исчезновения ощущения после окончания воздействия.

Для осуществления эффективного воздействия на человека необходимо учитывать характеристики его анализаторов, которые определяются опытным путем (например, смена темпа речи) или уже определены и закреплены в специальной литературе. Известно, например, что инерция зрения у нормального человека составляет 0,1-0,2 сек, поэтому время действия сигнала и интервал между появляющимися сигналами должны быть не меньше времени сохранения ощущений, равного 0,2-0,5 сек. В противном случае будут замедляться скорость и точность реагирования, поскольку во время прихода нового сигнала у человека будет еще оставаться образ предыдущего.

В процессе общения - ощущения человека человеком - также присутствует инерция, диктуя свой "закон": до тех пор, пока вы видите, что восприятие вашего "старого" образа еще свежо в памяти, не стремитесь быстро и навязчиво проявить себя в новом качестве: это объясняется тем, что адекватной реакции не последует, причем чем более впечатлительна личность, на которую производится воздействие, тем инертнее она будет реагировать на изменения.

Ощущения и их адекватность, или, иными словами, психологические возможности человека по приему информации, наиболее важны в деятельности тех людей, работа которых требует высокой степени точности: инженеров, врачей и т.д.

Чувствительность анализаторов непостоянна и изменяется под воздействием физиологических и психологических условий. Органы чувств обладают свойством приспособления, или адаптации. Адаптация может проявляться и как полное исчезновение ощущения в процессе продолжительного воздействия раздражителя, и как понижение или повышение чувствительности под влиянием воздействия раздражителя.

Интенсивность ощущений зависит не только от силы раздражителя и уровня адаптации рецепторов, но и от раздражений, воздействующих в данный момент на другие органы чувств. Изменение чувствительности анализаторов под влиянием раздражения других органов чувств называется взаимодействием ощущений. Взаимодействие ощущений проявляется в повышении и понижении чувствительности: слабые раздражители повышают чувствительность анализаторов, а сильные понижают.

Взаимодействие ощущений проявляется в явлениях сенсибилизации и синестезии. Сенсибилизация (лат. sensibilis - чувствительный) - повышение чувствительности нервных центров под влиянием воздействия раздражителя. Сенсибилизация может развиться не только путем применения побочных раздражителей, но и путем упражнений. Так, у музыкантов развивается высокая слуховая чувствительность, у дегустаторов - обонятельные и вкусовые ощущения. Синестезия - это возникновение под влиянием раздражения некоторого анализатора ощущения, характерного для другого анализатора. Так, при воздействии звуковых раздражителей у человека могут возникать зрительные образы.

Восприятие, его виды и свойства

Восприятие - это целостное отражение предметов и явлений объективного мира при их непосредственном воздействии в данный момент на органы чувств. Вместе с процессами ощущения восприятие обеспечивает непосредственно чувственную ориентировку в окружающем мире. Восприятие - результат деятельности системы анализаторов; оно предполагает выделение из комплекса воздействующих признаков основных и наиболее существенных, с одновременным отвлечением от несущественных. Восприятие делает возможным создание интегральной картины действительности в отличие от ощущений, отражающих отдельные качества реальности.

Поскольку восприятие требует объединения основных существенных признаков и сопоставления воспринятого с прошлым опытом, возникает явление стереотипизации. Стереотип - определенное, устойчивое на данный отрезок времени, представление о предмете или явлении.

Восприятие субъективно, так как одну и ту же информацию люди воспринимают по-разному, в зависимости от интересов, потребностей, способностей и т.п. Зависимость восприятия от прошлого опыта, от общего содержания психической деятельности человека и его индивидуальных особенностей называется апперцепцией.

Свойства восприятия

Целостность - внутренняя органическая взаимосвязь частей и целого в образе. Это свойство проявляется в двух аспектах: а) объединение разных элементов в целом; б) независимость образованного целого от качества составляющих его элементов.

Предметность - объект воспринимается нами как обособленное в пространстве и времени отдельное физическое тело. Наиболее ярко это свойство проявляется во взаимообособлении фигуры и фона.

Обобщенность - отнесение каждого образа к некоторому классу объектов.

Константность - относительное постоянство восприятия образа. Наше восприятие в определенных пределах сохраняет за параметрами их размеры, форму и цвет независимо от условий восприятия (расстояния до воспринимаемого предмета, условий освещенности, угла восприятия).

Осмысленность - связь с пониманием сущности предметов и явлений через процесс мышления.

Избирательность - преимущественное выделение одних объектов перед другими в процессе восприятия.

Восприятие подразделяется на следующие виды:

восприятие предметов и явлений окружающего мира;

восприятие человека человеком;

восприятие времени;

восприятие движений;

восприятие пространства;

восприятие вида деятельности.

Восприятия времени, движений и пространства - это сложные формы восприятий, имеющие многочисленные характеристики: продолжительный - краткосрочный, большой - маленький, высокий - низкий, далекий - близкий, быстрый - медленный. Восприятие деятельности подразделяется по видам: художественное, техническое, музыкальное и т.д.

Восприятия бывают внешненаправленными (восприятие предметов и явлений внешнего мира), и внутренненаправленными (восприятие собственных мыслей и чувств).

По времени возникновения восприятия бывают актуальными и неактуальными.

Восприятие может быть ошибочным (иллюзорным). Иллюзия - это искаженное восприятие реально существующей действительности. Иллюзии обнаруживаются в деятельности различных анализаторов. В наибольшей степени известны зрительные иллюзии, которые имеют самые различные причины: практический опыт, особенности анализаторов, изменение привычных условий. Например, вследствие того, что движение глаз по вертикали требует больших усилий, чем движение по горизонтали, возникает иллюзия восприятия прямых одной длины, расположенных по-разному: нам кажется, что вертикальные линии длиннее, чем горизонтальные.

Восприятие может быть не только ошибочным, но и неэффективным. Опытным путем можно убедиться в том, что уровень восприятия текста при его чтении путем проговаривания вслух гораздо ниже, чем при чтении про себя. Дело в том, что пропускная способность слуха ниже, чем пропускная способность зрения.

Ощущение и восприятие - процессы, остроту которых можно развивать, работая над собой и выполняя серии специальных упражнений. Для того чтобы натренировать глазомер, рекомендуется в течение нескольких дней упражняться, разделяя на чистом (нелинованном) листе бумаги прямую линию пополам. Ежедневно следует осуществлять по 10 упражнений и фиксировать величину отклонений.

Для того чтобы повысить скорость чтения и избавиться от привычки проговаривать то, что вы читаете, можно использовать следующее упражнение: в течение нескольких дней по три минуты читать про себя художественный текст, проговаривая вслух следующее: "раз, два, три". Это необходимо для того, чтобы воспрепятствовать произнесению текста.

Развитие восприятия имеет большое значение для учебной деятельности. Развитое восприятие помогает усваивать больший объем информации с меньшей степенью энергетических затрат.

Глава 2. Внимание


Различают две основные формы изменения чувствительности анализатора - адаптацию и сенсибилизацию.

Адаптацией называют изменение чувствительности анализатора под влиянием его приспособления к действующему раздражителю. Она может быть направлена как на повышение, так и на понижение чувствительности. Так, например, уже через 30-40 минут пребывания в темноте чувствительность глаза повышается в 20 000 раз, а в дальнейшем и в 200 000 раз. Глаз приспосабливается (адаптируется) к темноте в течение 4-5 минут - частично, 40 минут - достаточно и 80 минут - полностью. Такую адаптацию, которая приводит к повышению чувствительности анализатора, называют позитивной.

Негативная адаптация сопровождается снижением чувствительности анализатора. Так, в случае действия постоянных раздражителей, они начинают ощущаться слабее и исчезают. Например, обычным фактом для нас является отчетливое исчезновение обонятельных ощущений вскоре после того, как мы попадаем в атмосферу с неприятным запахом. Интенсивность вкусового ощущения тоже ослабевает, если соответствующее вещество долго держать во рту. Близким к описанному является и явление притупления ощущения под влиянием сильного раздражителя. Например, если из темноты выйти на яркий свет, то после "ослепления" чувствительность глаза резко снижается и мы начинаем нормально видеть.

Явление адаптации объясняется действием как периферических так и центральных механизмов. При действии механизмов, регулирующих чувствительность на самих рецепторах, говорят о сенсорной адаптации. В случае более сложной стимуляции, которая хотя и улавливается рецепторами, но не столь важна для деятельности, вступают в действие механизмы центральной регуляции на уровне ретикулярной формации, которая блокирует передачу импульсов, чтобы они не "загромождали" сознание избыточной информацией. Эти механизмы лежат в основе адаптации по типу привыкания к раздражителям (габитуации).

Сенсибилизация - это повышение чувствительности к воздействию ряда раздражителей; физиологически объясняется повышением возбудимости коры головного мозга к определенным стимулам в результате упражнения или взаимодействия анализаторов. По И.П. Павлову, слабый раздражитель вызывает в коре больших полушарий процесс возбуждения, который легко распространяется (ир-

радиирует) по коре. В результате иррадиации процесса возбуждения повышается чувствительность других анализаторов. Напротив, при действии сильного раздражителя возникает процесс возбуждения, который имеет тенденцию к концентрации, и по закону взаимной индукции это приводит к торможению в центральных отделах других анализаторов и снижению их чувствительности. Например, при звучании тихого тона одинаковой интенсивности и при одновременном ритмичном воздействии света на глаз будет казаться, что тон также меняет свою интенсивность. Другим примером взаимодействия анализаторов может служить известный факт повышения зрительной чувствительности при слабом вкусовом ощущении кислого во рту. Зная закономерности изменения чувствительности органов чувств, можно путем применения специально подобранных побочных раздражителей сенсибилизировать тот или иной анализатор. Сенсибилизация может быть достигнута и в результате упражнений. Эти данные имеют важное практическое приложение, например, в случаях необходимости компенсации сенсорных дефектов (слепота, глухота) за счет других, сохранных анализаторов или при развитии звуковысотного слуха у детей, занимающихся музыкой.

Таким образом, интенсивность ощущений зависит не только от силы раздражителя и уровня адаптации рецептора, но и от раздражителей, действующих в данный момент на другие органы чувств. Изменение чувствительности анализатора под влиянием раздражения других органов чувств называется взаимодействием ощущений. Взаимодействие ощущений, как и адаптация, появляется в двух противоположных процессах: повышения и понижения чувствительности. Слабые раздражители, как правило, повышают, а сильные понижают чувствительность анализаторов.

Взаимодействие анализаторов проявляется и в так называемой синестезии. При синестезии ощущение возникает под влиянием раздражения, характерного для другого анализатора. Наиболее часто возникают зрительно-слуховые синестезии, когда под влиянием слуховых раздражителей возникают зрительные образы ("цветной слух"). Этой способностью обладали многие композиторы - Н.А. Римский-Корсаков, А.П. Скрябин и др. Слухо-вкусовые и зрительно-вкусовые синестезии хотя и встречаются намного реже, но нас не удивляет употребление в речи выражений типа: "острый вкус", "сладкие звуки", "кричащий цвет" и другие.

Чувствительность анализаторов, определяемая ве­личиной абсолютных порогов, не постоянна и изменяется под влиянием ряда физиологических и психологических условий, сре­ди которых особое место занимает явление адаптации.

Адаптация, или приспособление , - это изменение чувствитель­ности органов чувств под влиянием действия раздражителя. Можно различать три разновидности этого явления. Адаптация как полное исчезновение ощущения в процессе про­должительного действия раздражителя. Например, легкий груз, покоящийся на коже, вскоре перестает ощущаться. Адаптацией называют также другое явление, близкое к опи­санному, которое выражается в притуплении ощущения под влияни­ем действия сильного раздражителя . Описанные два вида адаптации можно объединить термином Негативная адаптация , поскольку в результате их снижается чувствительность анализаторов. Наконец, адаптацией называют Повышение чувствительно­сти под влиянием действия слабого раздражителя . Этот вид адап­тации, свойственный некоторым видам ощущений, можно опре­делить как позитивную адаптацию.

Контраст ощущений Это изменение интенсивности и качества ощущений под влиянием предварительного или сопутствующего раздражителя. В случае одновременного действия двух раздражителей возникает одновременный контраст. Такой контраст можно проследить в зрительных ощущениях. Одна и та же фигура на черном фоне кажется светлее, на белом - темнее. Зеленый предмет на красном фоне кажется более насыщенным. Хорошо известно и явление последовательного контраста. После холодного слабый теплый раздражитель кажется горячим. Ощущение кислого повышает чувствительность к сладкому.

Сенсибилизация. Повышение чувствительности в результате взаимодействия анализаторов и упражнения называется сенсиби­лизацией. Зная закономерности изменения чувствительности органов чувств, можно путем применения специальным образом подо­бранных побочных раздражителей сенсибилизировать тот или иной рецептор, т. е. повышать его чувствительность. Сенсибилизация может быть достигнута и в результате упраж­нений. Известно, например, как развивается звуковысотный слух у детей, занимающихся музыкой.

Синестезия. Взаимодействие ощущений проявляется еще в од­ном роде явлений, называемом синестезией. Синестезия - это возникновение под влиянием раздражения одного анализатора ощуще­ния, характерного для другого анализатора. Синестезия наблюдает­ся в самых различных видах ощущений. Наиболее часто встре­чаются зрительно-слуховые синестезии, когда при воздействии звуковых раздражителей у субъекта возникают зрительные образы.

Поделиться