Чем защитить трубу отопления у входного порога. Как сделать монтаж отопления в частном доме своими руками? Управление и системы защиты

Заказав монтажные работы в компании “Термодинамика” Вы обязательно получите дополнительную скидку на оборудование и материалы.

Отопительную систему желательно продумать еще во время строительства дома. Нужно заранее предусмотреть ниши для стояков, если необходимо – отдельную комнату для котельной. Но даже если дом уже построен, можно найти выход из любой ситуации, тем более, современные технологии это позволяют. Для начала монтажа отопительной системы в доме должна присутствовать крыша и окна. Трубы можно проложить скрытой проводкой, например, вмонтировать их в пол, в специально предназначенные для этого стяжки. Если нет возможности это сделать, то прокладывать придется в стенах. Целесообразней производить монтаж отопления, когда стены уже поштукатурены, но стяжка еще не залита, чтобы после установки радиаторов не пришлось ковырять штукатурку и поправлять выводы. Можно произвести монтаж таким способом – сначала сделать выводы труб с запасом, а после оштукатуривания стен повесить и подключить радиаторы. Но это способ дольше. Для максимальной аккуратности лучше следовать по следующей технологии. В первую очередь нужно повесить все радиаторы, но пленку с них снимать не нужно до самого запуска отопительной системы. Если выходы к радиаторам будут проходить из стены, то надо отметить границы штроб, снять радиатор и проштробить места для труб. Когда все готово, нужно повесить обратно радиаторы, сделать разводку труб отопления и подключить их к радиаторам. Места, где подводка выходит из стены, лучше замазать алебастром. Когда раствор застыл, радиаторы можно снять и отложить подальше от того места, где будут проходить отделочные работы, иначе от повреждений и пыли их не спасет даже пленка. Если в доме отделочные работы завершены, все равно еще есть вариант прокладки скрытой разводки. Отопительные трубы можно проложить вдоль стен, внизу, в специально предназначенных для них коробах. Профессиональным языком такой монтаж труб называется «плинтусная разводка». Можно заплатить деньги и обратится к западным производителям труб – у них можно купить готовую систему «плинтусной разводки», со всеми материалами и продуманными узлами. Но, если вы не желаете платить лишние деньги, такую разводку можно сделать самому. В качестве коробов, кстати, можно использовать пластиковые. Такие часто применяются для того, чтобы скрыть электрические провода. Если в отопительной системе вашего дома используется тройная разводка, лучше проложить трубы вдоль стен, но при этом отступить 10-15 см, чтобы не испортить их, когда будете прибивать плинтуса. В прошлом веке в отопительных системах для слива соблюдались уклоны в сторону кранов. В настоящее время конструкции современных систем не позволяют это обеспечить, да и в этом нет смысла. Но главный момент, который нужно учесть при прокладке, – в трубах должны отсутствовать большие «горбы», то есть нужно проследить за тем, чтобы со временем в отопительной системе не появились воздушные пробки. Если этой проблемы нельзя избежать, есть выход – в верхней точке нужно установить автоматический воздухоотводчик. Чтобы обойти трубами дверной проем, желательно их провести по полу, чем прокладывать вокруг всего проема по верху, тем самым создавая большую петлю. В холодных помещениях нежелательно заниматься монтажом системы отопления. Как правило, фирмы-изготовители полимерных труб предупреждают о том, что не стоит заниматься их установкой при температуре ниже 7 градусов. Ломкость металлопластиковых труб повышается во время работы при низких температурах, сварка полипропиленовых труб ухудшается, а паять медные трубы вообще не стоит – низкая температура довольно сильно ощущается. Поэтому стоит подумать заранее и рассчитать монтаж так, чтобы система была запущена до начала холодов.

В этой статье рассмотрим проектирование системы отопления, если в качестве обвязки радиаторов выбрана схема Тихельмана (попутно-перехлёстывающая), о которой уже упоминалось в одной из предыдущих статей. Отдельная статья этой схеме посвящена из-за её (схемы, а не статьи) достоинств.

Устройство разводки по схеме Тихельмана

Напомню: схема Тихельмана выглядит примерно так:

Основные же достоинства схемы Тихельмана: универсальность, хорошая регулируемость (каждый радиатор можно отрегулировать отдельно).

Все радиаторы работают практически в одинаковых условиях по расходу теплоносителя и перепаду давления, при равных площадях поверхностей они имеют и равную теплоотдачу.

Не смотря на кажущуюся сложность, эта сложность… всего лишь кажущаяся. Нужно просто немного попрактиковаться рисовать такие схемы на планах.

Как обойти дверь при устройстве системы отопления по схеме Тихельмана?

Как поступать, если при монтаже по схеме Тихельмана встречается какое-нибудь препятствие? К примеру, дверь:

И не только при монтаже трубопровода по схеме Тихельмана, но и по любой другой схеме.

Есть несколько вариантов.

Простейший:

Здесь дверь обходится трубой сверху.

Важно! На участке над дверью нужно ставить обязательно автоматический воздухоотводчик , чтобы не накапливался воздух.

Минус: внешний вид помещения будет ещё тот; особенно если это жилая комната, а не прихожая. Да, автоматический воздухоотводчик имеет свойство время от времени подтекать, что тоже не приятно.

Другой вариант:

Проходим под дверью. То есть труба идёт ниже уровня пола. А есть ли такая возможность? Не всегда: может быть, пол уже сделан, а может, там такая стяжка, что не продолбишь…

«Нормальные герои всегда идут в обход…». Вот и нам можно обойти комнату в обратном направлении:

А почему бы и нет?

Схема Тихельмана для обвязки радиаторов двух этажей

Такой вариант изображён на рисунке:

Причём, здесь не каждый этаж по отдельности завязан по схеме Тихельмана, а вся система. Основные трубы (подача и обратка) - металлопластиковые диаметром 20 мм, к ним радиаторы подключены трубой 16 мм.

Схема Тихельмана для обвязки радиаторов трёх этажей

Смотрим рисунок:

Здесь тоже не на каждом этаже по отдельности своя обвязка, а одна обвязка, выполненная по схеме Тихельмана для одновременно всех трёх этажей. Стояки выполнены, например, металлопластиковой трубой диаметром 26 мм, подача и обратка на этажах диаметром 20 мм, а к радиаторам отводы трубой 16 мм.

И всё же! Если есть возможность, то лучше подключать каждый этаж отдельно и со своим насосом , иначе, если насос один на все этажи, то при выходе насоса из строя отопления не будет на всех этажах сразу.

Итак, сделаем выводы.

Схема Тихельмана имеет преимущества по сравнению с другими схемами обвязки радиаторов: 1) универсальность (подходит для любых помещений, планировок и т. д., в том числе больших площадей); 2) все радиаторы прогреваются равномерно. Не смотря на внешнюю сложность, освоить монтаж отопления по этой схеме вполне доступно. Только прочитайте ещё раз о диаметрах труб при такой разводке. И - пользуйтесь. Успехов.

схема Тихельмана

В загородных домах наиболее распространено автономное отопление. Это обусловлено отсутствием централизованного или не прохождением в большинстве сельских районов магистральных газопроводов. Для обогрева используются котлы небольших размеров, работающие на твёрдом, жидком топливе, электрической энергии и природном газе с поставкой в баллонах. Наиболее часто используется водяное отопление, отличающееся простотой и надёжностью, компактностью и гигиеничностью. Основное оборудование при таком способе включает следующие элементы:

  • водогрейный котёл;
  • радиаторные батареи;
  • водопроводные трубы;
  • расширительный бачок;
  • запорная и регулирующая арматура.

Традиционно используемые схемы отопления

В зависимости от вида трассы трубной прокладки и подключению труб к отопительным приборам различают следующие системы:

  1. Однотрубная . Циркуляция теплового носителя осуществляется по одной трубе без использования насосов. На магистрали выполняется последовательное подключение радиаторных батарей, от самого последнего по трубе в котёл возвращается охлаждённый носитель (“обратка”). Система проста в исполнении и экономична за счёт потребности меньшего количества труб. Но параллельное движение потоков приводит к постепенному остыванию воды, в результате к радиаторам, расположенным в конце последовательной цепочке, носитель поступает значительно охлаждённым. Этот эффект возрастает при увеличении числа радиаторных секций. Поэтому в комнатах, расположенных вблизи котла, будет чрезмерно жарко, а в удалённых холодно. Для увеличения теплоотдачи увеличивают количество секций в батареях, устанавливают разные диаметры труб, дополнительную регулирующую арматуру, выполняют обустройство каждого радиатора байпасами.
  2. Двухтрубная . Каждая радиаторная батарея подключается параллельно к трубам прямой подаче горячего теплоносителя и “обратке”. То есть каждый прибор снабжается индивидуальным выходом в “обратку”. При одновременном сбросе остывшей воды в общий контур, теплоноситель возвращается на подогрев в котёл. Но при этом также нагрев отопительных приборов постепенно уменьшается по мере их удаления от источников подачи тепла. Радиатор, расположенный в сети первым, получает наиболее горячую воду и первым отдаёт носитель в “обратку”, а расположенный в конце получает теплоноситель последним с пониженной температурой нагрева и также последним отдаёт воду в обратный контур. На практике в первом приборе циркуляция горячей воды получается наилучшей, а в последнем наихудшей. Стоит отметить и возросшую цену таких систем по сравнению с однотрубными.

Обе схемы оправданы для небольших площадей, но неэффективны при протяжённых сетях.

Усовершенствованной двухтрубной является схема отопления Тихельмана. При выборе конкретной системы определяющим является наличие финансовых возможностей и способность обеспечения отопительной системы оборудованием, обладающим оптимальными требуемыми характеристиками.

Особенность отопления Тихельмана

Идея изменения принципа действия “обратки” была обоснована в 1901-ом году немецким инженером Альбертом Тихельманом, в честь которого и получила своё название — “петля Тихельмана”. Второе название — “возвратная система реверсивного типа”. Так как движение теплоносителя в обоих контурах, подающем и обратном, осуществляется в одном, попутном направлении, часто используется и третье название — “схема с попутным движением тепловых носителей”.

Сущность идеи состоит в наличии одинаковой длины прямых и обратных трубных участков соединяющих все радиаторные батареи с котлом и насосом, что создаёт одинаковые гидравлические условия во всех отопительных приборах. Равные по протяжённости циркуляционные контуры, создают условия прохождения горячим теплоносителем одинакового пути к первому и последнему радиатору с получением ими одинаковой тепловой энергии.

Схема петли Тихельмана:

Порядок выполнения монтажных работ

Работы состоят из следующих операций:

  1. Установка котла. Необходимая минимальная высота комнаты для его размещения 2,5 м, допустимый объём помещения равен 8-ми куб. м. Требуемая мощность оборудования определяется расчётом (примеры приведены в специальных справочных изданиях). Ориентировочно для обогрева 10-ти кв. м необходима мощность в 1кВт.
  2. Навеска радиаторных секций. Рекомендуется использование в частных домах биометрических изделий. После подбора необходимого количества радиаторов, выполняется разметка их расположения (как правило, под оконными проёмами) и крепление с помощью специальных кронштейнов.
  3. Протягивание магистрали попутной системы отопления. Оптимально применение металлопластиковых труб, успешно выдерживающих высокие температурные режимы, отличающиеся долговечностью и лёгкостью монтажа. Основные трубопроводы (подача и “обратка”) от 20-ти до 26-ти мм и 16-ти мм для подсоединения радиаторов.
  4. Установка циркуляционного насоса. Монтируется на обратной трубе вблизи котла. Врезка выполняется через байпас с 3-мя кранами. Перед насосом обязательна установка специального фильтра, что послужит значительному увеличению сроков эксплуатации прибора.
  5. Монтаж расширительного бака и элементов обеспечивающих безопасность работы оборудования. Для системы отопления с попутным движением теплоносителя выбираются только мембранные расширительные бачки. Элементы группы безопасности поставляются в комплекте с котлом.

Для обводки магистралью дверных проёмов в подсобках и помещениях хозяйственного назначения допускается монтировать трубы прямо над дверью. В этом месте, для исключения накапливания воздуха, обязательно устанавливаются автоматические воздухоотводчики. В жилых помещениях трубы могут прокладываться под дверью в теле пола или обходом препятствия с использованием третьей трубы.

Схема Тихельмана для двухэтажных домов предусматривает определённую технологию. Трубная разводка выполняется с завязыванием всего здания целиком, а не каждого этажа по отдельности. Рекомендуется на каждом этаже устанавливать по одному циркуляционному насосу с сохранением равных длин обратных и подающих трубопроводов для каждого радиатора в отдельности в соответствии с основным условиям попутной двухтрубной системы отопления. Если установить один насос, что вполне допустимо, то при его выходе из строя произойдёт отключение отопительной системы во всём здании.

Многие специалисты считают целесообразным устройство общего стояка на два этажа с отдельной трубной разводкой на каждом этаже. Это позволит учесть различие потерь тепла на каждом этаже с подбором диаметров труб и количества необходимых секций в радиаторных батареях.

Раздельная попутная схема отопления на этажах значительно упростит настройку системы и позволит осуществить оптимальную балансировку нагрева всего здания. Но для получения должного эффекта обязательно необходима врезка в контур попутки балансировочного крана для каждого из двух этажей. Краны можно расположить рядом непосредственно вблизи котла.

Достоинства и недостатки системы Тихельмана

Основные преимущества:

  • универсальность для монтажа в помещениях различного назначения, планировки и размера. Возможность установки большого числа приборов. Оптимальность отопления дачных построек с равномерным прогревом при кратковременных ночёвках в зимнее время;
  • отсутствует необходимость в сложной балансировке с установкой дорогостоящего регулировочного оборудования;
  • равномерный прогрев всех помещений в здании с возможностью регулировки отдачи тепла каждым радиатором;
  • простота выполнения монтажных работ и обслуживания системы;
  • долговечность эксплуатации и редко возникающие поломки.

Имеющиеся минусы:

  • дороговизна, вызванная повышенной длиной трубопроводов и невозможностью использования малых диаметров;
  • прокладку петли не всегда возможно выполнить по периметру дома из-за мешающих особенностей архитектуры (высокие оконные и дверные проёмы, лестничные пролёты и другие препятствия).

Появление современных циркуляционных насосов со способностью эффективного прокачивания теплоносителей сделало попутную систему отопления одной из самых востребованных.

Обеспечение комфорта пребывания в помещениях дома в любое время года – одна из главных забот хозяев. Но усилия по утеплению стен, по установке соответствующей системы отопления могут быть напрасными, если тепло будет свободно выходить через окна или двери. Особенно это касается тех построек, в которых, по тем или иным причинам, открываются очень часто или даже длительное время остаются в открытом положении.

Простая ситуация: хозяева дома открывают какой-либо семейный бизнес — мастерскую, магазин или офисное помещение. С одной стороны, многочисленные клиенты – это отлично, но, вместе с тем, частое открытие дверей способно быстро выстудить даже хорошо отапливаемое помещение, а это – серьезные затраты на энергоресурсы. Другой вариант – специфика деятельности частной мастерской, оборудованной в гараже или в специальной пристройке, требует постоянного или очень частого открытия ворот (). Чтобы обеспечить себе приемлемые условия эффективной производительной работы в зимнее время придется тратить непомерные силы и средства для поддержания нормальной температуры. Но выход есть - и в том, и в другом случае должна помочь тепловая завеса на входную дверь.

Для чего нужна тепловая завеса

Что было проще понять предназначение тепловой завесы, следует для начала разобраться в том, как холодный воздух проникает в дом через открытые двери. Этот процесс обусловлен несколькими причинами – разницей температур снаружи и изнутри помещения, вызываемым этим перепадом различный уровень давления. И плюс к этому очень важная причина – это движение воздушных масс по улице – ветер, создаваемые вихревые потоки от проезжавшего транспорта и т.п.

На фрагменте «А» показано перемещение потоков холодного и более теплого воздуха через дверной проем в «спокойных» условиях. Холодный воздух всегда плотнее, и своим повышенным давлением просто выдавливает более лёгкий теплый. При этом холодный поток всегда расположен ближе к полу – все, наверняка, на своей житейской практике ощущали, как «тянет холодом» понизу из-под неплотно прикрытой двери.

К этому вполне обычному обмену прибавляется ветровая составляющая (фрагмент «Б»). Она конечно, величина непостоянная, зависит от направления и скорости ветра, стабильности или периодических порывов, размеров дверного проема и других параметров, но в целом чаще всего такое приложение вектора перемещения воздушных масс все же присутствует.

В итоге, в результате сложения обоих факторов, получается картина, показанная на фрагменте «С» - «канал» поступления холодного воздуха еще сильнее увеличивается по площади, занимая большую часть дверного проема. В таких условиях, если дверь приходится держать распахнутой или же часто открывать, с обогревом помещения не сможет справиться никакое отопительное оборудование, которое будет «молотить» вхолостую. Кроме того, по комнатам гуляют постоянные сильные сквозняки, резко повышающие вероятность простудных заболеваний, даже если люди одеты «по сезону».

А что, если подать достаточно узкий, но плотный направленный поток воздуха. Так, чтобы его давление превышало даже теоретически возможные значения внешнего и внутреннего напоров (фрагмент «D»). Если правильно рассчитать параметры такого потока, то он станет преградой для показанного выше обмена, отгораживая воздушные массы снаружи и внутри помещения. Несколько искривляя свою конфигурацию под влиянием внешнего на него давления, поток все же сохраняет нужную «собранность» и дробится только по достижению поверхности пола, разделяясь на два направления. Определенная часть выходит наружу, но все же более значительная – возвращается обратно в помещение (фрагмент «Е»).

Как такой эффект можно использовать?


  • Картинка «а» - зимнее время. Воздух получает необходимый нагрев, и получаемая завеса не только не пропускает холодные массы внутрь и не позволяют нагретым вырваться наружу, но и, возвращаясь в помещении, «оказывает подмогу» системе отопления.
  • Однако, рассматривать воздушную завесу слишком «узко», только в качестве своеобразного отопительного прибора, было бы большой ошибкой. На картинке «б» показана ее работа в теплое время года. Ситуация меняется на обратную – прохладный внутренний воздух не выходит наружу (хотя его плотность в рассматриваемом случае выше), а разогретый летним зноем уличный – не может проникнуть в помещение. Таким образом, в комнатах поддерживается комфортная для пребывания людей температура.
  • Но и это еще не все. Независимо от времени года и от режима работы такая завеса выполняет еще одну важную функцию (картинка «в»). В уличном воздухе всегда взвешено немало пыли, особенно, если в непосредственной близости располагается оживленная автомагистраль или даже железнодорожная линия. По этой же причине воздух может быть перезаполнен выхлопными газами. Естественно, что при попадании всех этих «бонусов» в помещения, тамошний микроклимат значительно пострадает. А вот тепловая завеса вполне справится с такой проблемой. Это касается еще и падающего снега, мелкого моросящего дождя, а в летнее время – полчищ мелких надоедливых насекомых.
  • И еще одно применение. С помощью таких воздушных завес появляется возможность зонировать помещения по типу создаваемого в них микроклимата. Например, можно «отгородить» просторный холл на входе (где повышенная температура воздуха особо и не нужна, и на прогрев такого помещения будет тратиться неоправданно много энергии) от внутренних жилых или рабочих помещений, даже не устанавливая дополнительных дверей.

Итак, создание воздушной завесы помогает справиться с большим количеством проблем. И всего этого можно добиться установкой специального прибора.

Несмотря на то что сама по себе воздушная тепловая завеса является потребителем электроэнергии, ее использование дает немалую выгоду. Так, практика показывает, что правильно выбранный и установленный прибор позволяет сэкономить до 30% на энергоносителях, затрачиваемых на отопление помещений зимой и их кондиционирование в летнее время. А если хозяин мыслит более широко, то не сможет не заметить того, что отсутствие холодных сквозняков резко сократит затраты на лекарства для домочадцев или на оплату больничных листов работающего у него персонала.

Еще одно важное достоинство – при таком богатом спектре возможностей сам прибор практически не занимает полезного места в пространстве помещения.

Для наглядности – небольшой анимированный ролик по принципу действия тепловых завес:

Видео: как работает тепловая воздушная завеса

Как устроена воздушная завеса

Как правило, воздушная тепловая завеса приставляет собой электротехническое устройство, собранное в корпусе выраженной вытянутой формы.


В верхней части корпуса имеется решетка (поз. 1), через которую производится забор воздуха из помещения.

Снизу расположено выходное щелевидное окно (сопло) (поз. 2), которое может быть оснащено подвижными шторками по типу жалюзи.

Элементы управления (поз. 3) могут располагаться на самом корпусе, в доступном для визуального контроля и манипулирования месте. Пульт управления, кроме того, может быть, выносным, и располагаться на стене комнаты в удобном месте.


На корпусе может быть клеммная колодка для подключения к сети электропитания, но на моделях бытового класса чаще всего имеется уже скоммутированный кабель с вилкой для подключения к розетке (поз. 4).

На многих современных моделях предусмотрено, кроме того, еще и дистанционное управление с помощью инфракрасного пульта (так же, как и в кондиционерах сплит-системы).

Основная задача тепловой завесы – создание мощного воздушного потока. А это означает, что главным узлом прибора становится нагнетательный вентилятор. Обычно эти устройства – не обычного лопастного, а турбинного типа, двух разновидностей – более компактного радиального (поз. «а») или вытянутого тангенциального вида (поз. «б»).


Поз. «в» - это теплообменник, где поток воздуха при необходимости получает нужный нагрев. Подавляющее большинство моделей имеет электрический теплообменник, где воздух получает нагрев от спиралей или ТЭНов. Однако, существуют стационарные модели тепловых завес, которые подключаются к существующим контурам водяного отопления.

Многие современные тепловые завесы имеют встроенные фильтры, которые попутно очищают прогоняемый через прибор воздух от взвешенной пыли.

Электронные схемы современных завес предусматривают многоуровневую защиту от короткого замыкания, пробоя на корпус, перегрева, имеют модули термостатического управления уровнем нагрева теплообменника и скоростью вращения вентилятора.

Классификация воздушных тепловых завес

Существует несколько градаций классификации тепловых завес.

По расположению относительно дверного проема:

  • Классическое исполнение большинство тепловых воздушных завес — это прибор с горизонтальной установкой над дверным проемом (воротами, окном и т.п.)

  • Иногда, в силу тех или иных причин технологического или эстетического характера установка тепловой завесы сверху может быть невозможна или нерациональна. Для таких ситуаций предусмотрены вертикальные приборы, которые устанавливаются «колоннами» с одной, или даже с обеих сторон дверного проема.

Многие модели в этом плане обладают повышенной универсальностью – их конструкция позволяет, с учетом специфики помещения, устанавливать их как в горизонтальном, так и в вертикальном положении.


По типу установки:

Большинство моделей имеет металлический корпус, исполнение которого подразумевает монтаж прибора на стене. Однако, если к внутреннему оформлению помещения предъявляются какие-либо повышенные требования с точки зрения дизайна, то можно подобрать тепловую воздушную завесу, которая встраивается в потолок или в стену по высоте проема.


По наличию и виду теплообменника:

Все воздушные завесы по этому критерию можно разделить на три группы:

  • Завесы с электрическим теплообменником. Обычно в классификации маркируются серийными обозначениями RS , RM или RT .

Достоинства – максимальная простота устройства и установки прибора, высокие показатели эффективности, возможность плавной регулировки температуры нагрева воздушного потока.

В качестве нагревательных элементов на старых моделях применялись обычные спирали, но сейчас от такого подхода практически повсеместно отказались, так как открытые нагреватели «пережигают» кислород и быстро сушат воздух в помещении. В настоящее время применяются трубчатые нагреватели по типу всем знакомых ТЭНов, или более современные полупроводниковые РТС (Pоsitive Tempеrature Coеfficient), имеющие возможность саморегуляции нагрева и потребления электроэнергии.

Недостатки электрических теплообменников – значительное потребление мощности (не считая затрат на обеспечение работы вентилятора), и некоторая «инертность» при запуске – теплообменнику требуется определенное время для выхода на рабочий режим.

  • Тепловые завесы с водяным теплообменником (серия RW ).

В таких моделях электроэнергия расходуется только на обеспечение работы вентилятора и группы управления. Это, безусловно, делает водяные тепловые завесы намного более экономичными при постоянной эксплуатации.

В корпусе (снаружи или скрытно) расположены патрубки для подключения прибора с существующему контуру системы водяного отопления (на рисунке показаны стрелками).


Патрубки для подключения подачи и «обратки» системы отопления дома

Недостатки такой разновидности тепловых завес очевидны – это масса сложностей в процессе установки. Необходимо заранее предусматривать ответвления от общего контура, а при условии сохранения эстетичности интерьера подобная операция бывает довольно проблематичной. Теплообменник такой завесы имеет мелкую трубчатую структуру (подобно радиатору в автомобиле), которая быстро забьётся, если не предусмотреть фильтрующее устройство. Кроме того, потребляемая тепловая мощность подобной установки должна соответствовать реальным возможностям автономной системы отопления, чтобы подключение завесы не сказалось на уровне нагрева радиаторов в других помещениях.

  • Воздушные завесы, не оснащенные теплообменником (серийное обозначение – RV ).

Такие приборы используются в условиях, года дополнительного нагрева воздуха не требуется. Они хорошо защищают от попадания в помещения уличной пыли, загазованности, насекомых, от утечки кондиционированного воздуха наружу. Находят широкое применение в производственной практике – для зонирования просторных помещений, защиты от попадания теплого воздуха в морозильные камеры или хранилища и т.п.

По уровню мощности (производительности) и, соответственно, предназначению:

  • К серии RS относят мини-завесы с ограниченной сферой применения. Их производительности хватает для эффективного «завешивания» только небольших проемов, например, окон приема посетителей, выходящих в холодный холл, или окошек обслуживания клиентов в уличных киосках, транспортных кассах и т.п. Обычно они рассчитаны на проемы высотой не более полутора метров, шириной до 800 мм.

Скорость потока воздуха и объем прокачки в минуту – невелики. В бытовом плане подобные тепловые завесы практического применения не получают.

  • Тепловые завесы серии – это самая большая группа приборов, которые предназначены для установки в большинстве существующих стандартных дверных проемов, высотой примерно от 2,5 до 3,5 метра. В том числе, подходят они и для или для перехода от холодной прихожей в жилой сектор дома.

Тепловая завеса среднего класса — вполне подойдет для входной двери

Такие приборы – наиболее «ходовые». Именно такие серии чаще всего оснащаются удобными выносными блоками или дистанционными пультами управления.

  • Мощные тепловые завесы серии находят применение для защиты высоких проемов, от 3,5 до 7 метров. Это могут быть ворота автомастерской, складских или производственных помещений, входы в крупные торговые центры или здания культурно-социального предназначения.

Очень часто именно к такой категории относят и мощные установки серии RW , подключенные к системам центрального отопления или горячего водоснабжения общественных зданий и промышленных сооружений. стоимость водяных тепловых завес – значительно превышает аналогичный показатель электрических моделей, сопоставимых по производительности и размерам.

Существуют и сверхмощные тепловые завесы, которые способны создать воздушный барьер в проемах и проездах высотой вплоть до 12 метров.

Цены на популярные модели тепловых завесов на входную дверь

Как выбрать оптимальную тепловую завесу

Выбор воздушной тепловой завесы имеет свои особенности, с которыми непременно нужно ознакомиться перед походом в магазин.

Помимо уже упомянутых критериев выбора – по месту установки (горизонтально или вертикально) и принципу работы теплообменника, обязательно обращают внимание на следующие характеристики:

  • Размеры (в большей мере – длину) самого прибора, то есть ширину создаваемой им воздушной завесы.
  • Производительность, то есть способность прокачать определенное количество воздуха за единицу времени.
  • Мощность теплообменного блока.
  • Оснащенность полезными регулировочными опциями.
  • Степень защиты, то есть уровень безопасности эксплуатации устройства.
  • Для интерьерного оформления помещения имеет значение и внешний вид тепловой завесы.

Размеры тепловой завесы

Определяющим параметром, безусловно, является длина прибора. Она должна обеспечивать требуемый воздушный поток по всей ширине дверного проема, не допуская свободных просветов для проникновения холодных или запыленных масс снаружи. Как правило, длина таких устройств лежит в пределах 600 ÷ 2000 мм.

Для стандартных дверных проемов обычно приобретаются завесы длиной порядка 800 мм. При грамотном подходе следует принимать в расчет, что ширина воздушного потока должна быть как минимум равна просвету дверей, но еще лучше, если она будет несколько больше.

Есть еще один нюанс. Технология производства воздушных нагнетателей несколько ограничивает длину турбины (до 800 мм), так как при превышении подобных размеров резко возрастают вибрационные явления, что требует достаточно дорогостоящей «подвески».


Длина турбины обычно ограничивается — до 800 мм

Стараясь минимизировать затраты при выпуске «длинномерных» моделей, многие производители идут по пути упрощения: размещают электропривод в центре прибора, а турбины – слева и справа, добиваясь нужной длины. В подобной компоновке может таиться серьезный недостаток – в центре создаваемого воздушного потока может образоваться «провал» или область пониженного давления, которые способны стать лазейкой для проникновения воздуха снаружи.

Если ширина дверного проема больше, чем длина понравившейся модели или вообще имеющихся в продаже приборов, имеет смысл приобрести две завесы (а иногда – и больше), и установить их вплотную одна к другой.


Показатели производительности тепловой завесы

Вполне понятно, что тепловая завеса должна создавать воздушный поток, «плотность» которого, то есть внутренне давление воздуха превышало бы внешнее в любой точке дверного проема, от места установки и до пола (противоположной стороны дверей).

Расчетами определено, что такие требуемые параметры сохраняются при скорости воздушного слоя в точке встречи с преградой не менее 2,5 м/с. Естественно, скорость из-за сопротивления воздуха падает по мере удаления от прибора.

Скорость и плотность воздушного потока зависят от рабочего диаметра турбины, скорости ее вращения и, стало быть, от общей производительности нагнетательного блока. Например, в таблице ниже наглядно показана зависимость дальности эффективного действия тепловой завесы в зависимости от диаметра турбины – в ряде случаев можно ориентироваться и на такие показатели:

Расстояние от выходного сопла тепловой завесы Скорость потока воздуха в зависимости о установленного в тепловой завесе вентилятора
Рабочий диаметр вентилятора
Ø 100 мм Ø 110 мм Ø 120 мм Ø 130 мм Ø 180 мм
0 м 9 м/с 10 м/с 12 м/с 14 м/с -
1 м 7 м/с 7 м/с 11 м/с 10 м/с -
2 м 4 м/с 4м/с 8 м/с 7,5 м/с -
3 м 1,0 ÷ 2 м/с 1,5 ÷ 2 м/с 5 м/с 6 м/с -
4 м - - 2 ÷ 3 м/с 5 м/с -
5 м - - - 3 м/с -
6 м - - - 1,0 ÷ 2 м/с -
0 м 8,5 м/с 8,5 м/с 12 м/с 12 м/с 15 м/с
1 м 6,5 м/с 6,5 м/с 10 м/с 9,5 м/с 13 м/с
2 м 3 м/с 3 м/с 7 м/с 9 м/с 11 м/с
3 м 1,0 ÷ 2,0 м/с 2 м/с 4 м/с 5,5 м/с 9 м/с
4 м - - 1,0 – 2,0 м/с 4 м/с 7 м/с
5 м - - - 3 м/с 5 м/с
6 м - - - 1,0 ÷ 2,0 м/с 3 м/с
7 м - - - - 2 м/с
8 м - - - - 1,0 – 2,0 м/с

Чаще всего в технической документации на изделие производитель напрямую указывает, под какие максимальные размеры проема разработана конкретная модель. Там же обязательно указывается и производительность системы, обычно в кубометрах в час. Считается, что оптимальным для стандартного дверного проема габаритами 0,8÷1,0 × 2,0÷2,2 м считается прокачка 700 ÷ 900 м³/ч. Однако, если посмотреть на каталоги оборудования, то нередко встречаются завесы и с куда более скромными значениями. Единства взглядов производителей в этом вопросе нет.

Существуют специальные алгоритмы расчета параметров тепловых завес, которые учитывают не только линейные показатели места установки, но и особенности расположения входов в здание, средние перепады температур для конкретного региона, преобладающее направление ветров и т.п. Подобные вычисления – это удел специалистов, и если кому-то недостаточно для выбора модели заявленных производителем характеристик, то можно обратиться в соответствующую проектную организацию.

Почему вопрос производительности стоит столь остро? От него напрямую зависит эффективность функционирования воздушной завесы.


  • На фрагменте №3 схематично показана работа правильно подобранной модели тепловой завесы. Воздушный поток сохраняет свою «плотность» для встречи с преградой, а затем примерно на ¾ отражается обратно в помещение.
  • Фрагмент №2 – установлена тепловая завеса с избыточной производительностью. Скорость у поверхности пола слишком велика, и поток разбивается таким образом, что значительная его часть выносится наружу. Безусловно, это ведет к совершенно неоправданным потерям затраченной энергии.
  • А на фрагменте №3 показано, что будет, если мощностей создаваемого потока — недостаточно. Внешнее давление воздушных масс перевешивает, и в нижней части дверного проема открывается широкое «окно» для холодного уличного воздуха. Смысл установки такой тепловой завесы вообще весьма сомнителен – она попросту не играет сколь-нибудь значимой роли.

Тепловая мощность воздушной завесы

Как ни странно, но этот показатель для тепловой завесы не является определяющим – в этом их принципиальное различие от, казалось бы, родственных приборов – тепловых пушек или устанавливаемых у дверей и окон напольных или встраиваемых в пол конвекторов отопления.

Работа теплообменника воздушной завесы направлена не на поддержание оптимальной температуры в помещении, а лишь на частичную компенсацию тепловых потерь через дверь. Понятно. что часть нагретого воздуха при работе в «зимнем» режиме возвращается обратно в помещение, но эта циркуляция должна оказывать лишь вспомогательное действие на функционирующую в здании систему отопления, но никак не подменять ее.

При высоких скоростях прокачки воздуха придать ему слишком высокую температуру – задача сложная и очень энергозатратная. Обычно в большинстве моделей прирост температуры ограничивается в лучшем случае 20-ю градусами, а на термостатических элементах управления максимальное значение, как правило, не превышает 30°С – большего от тепловой завесы и не требуется.


А вот на общую потребляемую мощность стоит обратить внимание. От этого показателя будут зависеть параметры выделенной линии электропитания, автомата в распределительном щите дома, УЗО и т.п.

Управление и системы защиты

Все электрические тепловые завесы оснащены двумя уровнями управления: один отвечает за создание и поддержание заданной производительности «по воздуху», а второй – за работу теплообменного узла. При этом система защиты никогда не допустит включения обогревателя при неработающей турбине, чем обеспечивается предохранение прибора от перегрева.

Самые простые, недорогие модели имеют предустановленные уровни производительности и нагрева ТЭНов, которые изменить не получится (единственное исключение – можно полностью выключить нагрев при работе в «летнем» режиме. Однако такая дешевизна и упрощение конструкции вряд ли оправданы для использования в частном доме – всем хочется иметь возможность оптимально настраивать микроклимат в помещении.

Более сложные модели оснащены ступенчатой регулировкой, например, имеют 2 ÷ 3 уровня мощности турбины и столько же – градаций по нагреву теплообменника.

Однако, в последнее время все же наиболее популярными становятся тепловые завесы с электронным управлением, которое открывает хозяевам возможность плавных точных регулировок.


Наличие термостатического датчика позволит существенно сэкономить на потреблении электроэнергии – автоматика будет включать или выключать блок ТЭНов только по мере необходимости.

Тепловые завесы могут комплектоваться выносными блоками управления, которые располагаются на стене. Удобны в эксплуатации модели, у которых предусмотрены дистанционные пульты.

Как и все современные электроприборы, тепловая завеса должна быть оснащена несколькими степенями защиты от коротких замыканий, перегрева, пробоя фазы на корпус, перепадов напряжения и т.п.

Конструкторы и дизайнеры фирм-производителей стараются выполнить тепловые завесы внешне так, чтобы они не портили своим видом интерьера помещения. Некоторые модели могут стать даже своеобразным украшением входной группы.

Монтаж тепловой завесы

Самостоятельная установка тепловых воздушных завес, хотя и не приветствуется производителями, но все же вполне возможна, особенно, если речь идет о самых распространенных – полностью электрических моделях. По степени сложности она – намного проще установки бытового кондиционера.

Можно ли самостоятельно установить кондиционер?

Монтаж кондиционера обычно требует особых навыков, так как при установке сплит-системы потребуется правильно произвести заправку ее хладагентом. Как производится – в специальной публикации нашего портала.

Главное – предусмотреть линию питания требуемой мощности, необходимые предохранительные и защитные устройства (автомат и УЗО), точку подключения прибора.

В комплект тепловой завесы, как правило, входят кронштейны (или монтажная панель), крепежные элементы для ее подвеса над дверным проемом. Вся установка в основном будет заключаться в проведении тщательной разметки, закреплению на плоскости стены монтажных деталей и последующего подвешивания самого прибора. Он может быть достаточно массивным, так что следует проявлять разумную осторожность, а еще лучше – заручиться помощником.


После установки прибора, если он оснащён регулируемыми жалюзи, следует расположить их под углом примерно 30° от вертикали в сторону входа. На многих моделях подобный уклон потока предусмотрен самой конструкцией воздушного сопла.

Возможно, потребуется прокладка сигнального кабеля и крепление на стене выносного блока управления. Все эти нюансы всегда подробно описываются в руководстве по монтажу конкретной модели, и с ними следует ознакомиться заранее, еще при выборе завесы, чтобы реально оценить свои возможности.


Монтаж завесы с водяным теплообменником – куда более сложное мероприятие, нередко требующее специальных теплотехнических расчетов и установки дополнительного коллекторного или насосного оборудования. Приниматься за подобное занятия, не имея опыта – не стоит.

Узнайте, а также ознакомьтесь с советами профессионала, из нашей новой статьи.

Видео: несколько рекомендаций по выбору тепловой завесы на входную дверь

В этой статье рассмотрим проектирование системы отопления, если в качестве обвязки радиаторов выбрана схема Тихельмана (попутно-перехлёстывающая), о которой уже упоминалось в одной из предыдущих статей. Отдельная статья этой схеме посвящена из-за её (схемы, а не статьи) достоинств.

Устройство разводки по схеме Тихельмана

Напомню: схема Тихельмана выглядит примерно так:

Основные же достоинства схемы Тихельмана: универсальность, хорошая регулируемость (каждый радиатор можно отрегулировать отдельно).

Все радиаторы работают практически в одинаковых условиях по расходу теплоносителя и перепаду давления, при равных площадях поверхностей они имеют и равную теплоотдачу.

Не смотря на кажущуюся сложность, эта сложность… всего лишь кажущаяся. Нужно просто немного попрактиковаться рисовать такие схемы на планах.

Как обойти дверь при устройстве системы отопления по схеме Тихельмана?

Как поступать, если при монтаже по схеме Тихельмана встречается какое-нибудь препятствие? К примеру, дверь:

И не только при монтаже трубопровода по схеме Тихельмана, но и по любой другой схеме.

Есть несколько вариантов.

Простейший:

Здесь дверь обходится трубой сверху.

Важно! На участке над дверью нужно ставить обязательно автоматический воздухоотводчик , чтобы не накапливался воздух.

Минус: внешний вид помещения будет ещё тот; особенно если это жилая комната, а не прихожая. Да, автоматический воздухоотводчик имеет свойство время от времени подтекать, что тоже не приятно.

Другой вариант:

Проходим под дверью. То есть труба идёт ниже уровня пола. А есть ли такая возможность? Не всегда: может быть, пол уже сделан, а может, там такая стяжка, что не продолбишь…

«Нормальные герои всегда идут в обход…». Вот и нам можно обойти комнату в обратном направлении:

А почему бы и нет?

Схема Тихельмана для обвязки радиаторов двух этажей

Такой вариант изображён на рисунке:

Причём, здесь не каждый этаж по отдельности завязан по схеме Тихельмана, а вся система. Основные трубы (подача и обратка) - металлопластиковые диаметром 20 мм, к ним радиаторы подключены трубой 16 мм.

Схема Тихельмана для обвязки радиаторов трёх этажей

Смотрим рисунок:

Здесь тоже не на каждом этаже по отдельности своя обвязка, а одна обвязка, выполненная по схеме Тихельмана для одновременно всех трёх этажей. Стояки выполнены, например, металлопластиковой трубой диаметром 26 мм, подача и обратка на этажах диаметром 20 мм, а к радиаторам отводы трубой 16 мм.

И всё же! Если есть возможность, то лучше подключать каждый этаж отдельно и со своим насосом , иначе, если насос один на все этажи, то при выходе насоса из строя отопления не будет на всех этажах сразу.

Итак, сделаем выводы.

Схема Тихельмана имеет преимущества по сравнению с другими схемами обвязки радиаторов: 1) универсальность (подходит для любых помещений, планировок и т. д., в том числе больших площадей); 2) все радиаторы прогреваются равномерно. Не смотря на внешнюю сложность, освоить монтаж отопления по этой схеме вполне доступно. Только прочитайте ещё раз о диаметрах труб при такой разводке. И - пользуйтесь. Успехов.

схема Тихельмана

Поделиться